• 제목/요약/키워드: $H_{2}$ production

검색결과 8,630건 처리시간 0.04초

주방용 오물분쇄기로 처리된 음식물류 폐기물의 혐기성 수소 발효 (Anaerobic Hydrogen Fermentation of Food Waste Treated by Food Waste Disposer)

  • 최재민;이채영
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.468-474
    • /
    • 2014
  • This study was conducted to evaluate the characteristics of mesophilic fermentative $H_2$ production from food waste which was treated by food waste disposer. It was found that $H_2$ yield and lag phase were affected by particle size of food waste. The $H_2$ yield decreased with increasing particle size while lag phase increased. The maximum $H_2$ yield was found $0.584{\pm}0.03$ mol $H_2$/mol hexose at particle size smaller than 0.30 mm. The $H_2$ production rate was also affected by chemical composition of food waste. The $H_2$ production rate linearly decreased with increasing proteins to carbohydrates ratio(P/C ratio) where the maximum value was $0.031{\pm}0.006$ mol $H_2$/mol hexose h at 0.17.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

RBL-2H3 비만세포와 OVA/alum 감작 생쥐에서 청심보혈탕(淸心補血湯)의 항알레르기 효과 (Anti-allergic Effects of Chungshimbohyeoltang in RBL-2H3 Mast Cells and OVA/alum Sensitized Mice)

  • 조민서;한재경;김윤희
    • 대한한방소아과학회지
    • /
    • 제26권3호
    • /
    • pp.30-45
    • /
    • 2012
  • Objectives The suppressive effect of CSBHT has been mysterious. Thus, the present study is designed to investigate the suppressive effect and its mechanism. Methods To investigate the anti-allergy effect from ChungShimBoHyeolTang(CSBHT), RBL-2H3 cell was used and examined by Real-Time PCR, and IL-4 and IL-13 from RBL-2H3 was examined by ELIS. In addition, GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos, c-Jun, NF-${\kappa}B$ p65 transcription factors of RBL-2H3 mast cell were examined by Western Blotting. Also, OVA/alum-sensitized mice were orally administrated CSBHT and serum OVA-specific IgE production, IL-4, and IL-13 production in splenocytes supernatant were examined. Results As a result of treating with CSBHT extract, RBL-2H3 mast cells significantly suppressed the IL-4 and IL-13 mRNA expression and IL-4 and IL-13 production. Western blot analysis of transcription factors involving IL-4 and IL-13 expression also revealed a prominent decreases of mast cell's specific transcription factors including GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos, and NF-${\kappa}B$ p65. Also, examining the mice, administration of CSBHT suppressed the amount of OVA-specific IgE in OVA/alum-sensitized mice and IL-4 and IL-13 production in splenocytes supernatant. Conclusions The study suggested that the anti-allergic activities of CSBHT suppresses IL-4 and IL-13 production from the Th2 cytokines by suppressing transcription factors as GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 in mast cells.

Fomitella fraxinea 균사체로부터 Fibrin분해효소의 최적생산 및 효소적 특성 (Optimal Production and Characterization of Fibrinolytic Enzyme from Fomitella fraxinea Mycelia.)

  • 이종석;백형석;박상신
    • 한국미생물·생명공학회지
    • /
    • 제30권4호
    • /
    • pp.325-331
    • /
    • 2002
  • 아카시재목 버섯 균사체로부터 혈전용해효소를 생산하기 위한 최적 배양조건을 조사하였다. 복합배지 중 CVM이 가장 우수하였으며, 탄소원, 질소원, 인산원 및 무기질원으로 각각 2% galactose, 0.6% yeast extract와 0.1% $NaNO_3$, 0 0.1 % $K_2HPO_4$, 및 0.05% $MgSO_4$. $7H_2O$의 첨가에 의하여 효소의 활성이 가장 증가하였다. 따라서 F. fraxinea로부터 혈전용해효소를 생산하기 위한 최적 배지조건은 2% galactose, 0.6% yeast extract, 0.1 % $NaNO_3$, 0.1 % $K_2HPO_4$ 및 0.05% $MgSO_4$. $7H_2O$이다. 이상의 배지를 사용하여 배양온도 $25^{\circ}C$ 초기 pH 9에서 10일 동안 배양하였을 때 효소의 생산이 가장 높은 결과를 나타내었다. 배양액 중의 효소의 최적 온도 및 pH는 $40^{\circ}C$ 및 pH 10이었다. 본 효소의 활성이 PMSF와 aprotinin에 의하여 완전히 억제되는 것으로 보아 본 효소가 senne protease 계열의 효소임을 추정할 수 있었다.

Enhanced Production of Gamma-Aminobutyric Acid by Optimizing Culture Conditions of Lactobacillus brevis HYE1 Isolated from Kimchi, a Korean Fermented Food

  • Lim, Hee Seon;Cha, In-Tae;Roh, Seong Woon;Shin, Hae-Hun;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.450-459
    • /
    • 2017
  • This study evaluated the effects of culture conditions, including carbon and nitrogen sources, L-monosodium glutamate (MSG), and initial pH, on gamma-aminobutyric acid (GABA) production by Lactobacillus brevis HYE1 isolated from kimchi, a Korean traditional fermented food. L. brevis HYE1 was screened by the production analysis of GABA and genetic analysis of the glutamate decarboxylase gene, resulting in 14.64 mM GABA after 48 h of cultivation in MRS medium containing 1% (w/v) MSG. In order to increase GABA production by L. brevis HYE1, the effects of carbon and nitrogen sources on GABA production were preliminarily investigated via one-factor-at-a-time optimization strategy. As the results, 2% maltose and 3% tryptone were determined to produce 17.93 mM GABA in modified MRS medium with 1% (w/v) MSG. In addition, the optimal MSG concentration and initial pH were determined to be 1% and 5.0, respectively, resulting in production of 18.97 mM GABA. Thereafter, response surface methodology (RSM) was applied to determine the optimal conditions of the above four factors. The results indicate that pH was the most significant factor for GABA production. The optimal culture conditions for maximum GABA production were also determined to be 2.14% (w/v) maltose, 4.01% (w/v) tryptone, 2.38% (w/v) MSG, and an initial pH of 4.74. In these conditions, GABA production by L. brevis HYE1 was predicted to be 21.44 mM using the RSM model. The experiment was performed under these optimized conditions, resulting in GABA production of 18.76 mM. These results show that the predicted and experimental values of GABA production are in good agreement.

Cardioprotective Effects of Low Dose Bacterial Lipopolysaccharide May Not Be Directly Associated with Prostacyclin Production

  • Moon, Chang-Hyun;Kim, Ji-Young;Lee, Soo-Hwan;Baik, Eun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권3호
    • /
    • pp.331-343
    • /
    • 1998
  • Sublethal dose of bacterial lipopolysaccharide (LPS) would induce protection against cardiac ischemic/reperfusion (I/R) injury. This study examines the following areas: 1) the temporal induction of the cardio-protection produced by LPS; and 2) the relations between a degree of protection and the myocardial prostacyclin ($PGI_2$) production. Rats were administered LPS (2 mg/kg, i.v.), and hearts were removed 1, 4, 8, 14, 24, 48, 72,and 96 h later. Using Langendorff apparatus, haemodynamic differences during 25 min of global ischemia/30 min reperfusion were investigated. The concentration of $PGI_2$ in aliquots of the coronary effluent was determined by radioimmunoassay as its stable hydrolysis product $6-keto-PGF1_{\alpha}$ and lactate dehydrogenase release were measured as an indicative of cellular injury. LPS-induced cardiac protection against I/R injury appeared 4 h after LPS treatment and remained until 96 h after treatment. $PGI_2$ release increased 2-3 fold at the beginning of reperfusion compared to basal level except in hearts treated with LPS for 48 and 72 h. In hearts removed 48 and 72 h after LPS treatment, basal $PGI_2$ was increased. To determine the enzymatic step in relation to LPS-induced basal $PGI_2$ production, we examined prostaglandin H synthase (PGHS) protein expression, a rate limiting enzyme of prostaglandin production, by using Western blot analysis. LPS increased PGHS protein expression in hearts at 24, 48, 72, 96 h after LPS treatment. Induction of PGHS expression appeared in both isotypes of PGHS, a constitutive PGHS-1 and an inducible PGHS-2. To identify the correlationship between $PGI_2$ production and the cardioprotective effect against I/R injury, indomethacin was administered in vivo or in vitro. Indomethacin did not inhibit LPS-induced cardioprotection, which was not affected by the duration of LPS treatment. Taken together, our results suggest that $PGI_2$ might not be the major endogenous mediator of LPS-induced cardioprotection.

  • PDF

Ginsenoside Rg3 및 그 유도체 Ginsenoside Rg3-2H의 NO 생성 및 lymphocyte 분열 억제 효과 (Inhibitory Effect of Ginsenoside Rg3 and its derivative Ginsenoside Rg3-2H on NO production and lymphocyte proliferation)

  • 조재열
    • Journal of Ginseng Research
    • /
    • 제32권3호
    • /
    • pp.264-269
    • /
    • 2008
  • Ginsenosides are major components in Panax ginseng and known to have numerous pharmacological activities such as anti-cancer, anti-diabetes, anti-viral and anti-atherosclerosis effects. In this study, the regulatory activities of G-Rg3 and its derivative 25-hydroxy Rg3 (G-Rg3-2H) on the production of nitric oxide (NO) in macrophages and the proliferation of lymphocytes prepared from spleen and bone marrow under treatment of lipopolysaccharide (LPS) or concanavalin (Con) A were examined. G-Rg3 and G-Rg3-2H dose-dependently inhibited NO production from LPS-activated RAW264.7 cells and in agreement, these compounds protected RAW264.7 cells from LPS-mediated cytotoxicity. In contrast, G-Rg3-2H dose-dependently inhibited lymphocyte proliferation induced by both LPS and Con A, while there was no inhibition by G-Rg3. Therefore, our data suggest that these compounds may be applied for NO-mediated or lymphocyte-mediated immunological diseases.

Aspergillus oryzae KC-15에 의한 protease의 생산 및 그 효소의 특징에 관한 연구 (Studies on the Production of Protease by Aspergillus oryzae KC-15 and Characteristics of the Enzymes)

  • 이미자;정만재
    • 한국미생물·생명공학회지
    • /
    • 제8권2호
    • /
    • pp.77-85
    • /
    • 1980
  • Protease의 생산능이 우수한 Asp. oryzae KC-15를 선정하고 다음과 같은 결과를 얻었다. 1. Wheat bran medium에서의 최적배양시간은 acid protease와 neutral protease는 약 48시간, alkaline protease는 약 72시간이었고 본 균주가 생산하는 protease는 alkaline protease와 neutral pro-tease가 주체이며 acid protease는 극히 미약하였다. 2. Wheat bran medium 에 $Na_2$HPO$_4$, NaH$_2$PO$_4$, Glucose, rice powder 및 Na-glutamate의 첨가는 alkaline protease와 neutral psotease의 생산에, (NH$_4$)$_2$HPO$_4$, glucose 및 rice powder의 첨가는 acid protease의 생산에 효과적이었다. 3. 조효소의 특징(equation omitted) 4. 내열제로서 NaH$_2$PO$_4$가장 효과적이었으며 최적첨가량은 alkaline protease와 neutral protease 에 대하여는 10mg, acid protease에 대하여는 5mg 이었다. 5. 6$0^{\circ}C$ 이상에서는 NaH$_2$PO$_4$의 내열효과는 거의 인정할 수 없었다. 6. NaH$_2$PO$_4$10mg을 첨가하고 55$^{\circ}C$에서 30분간 처리하였을 때의 잔존활성은 alkaline protease는 약 58%, neutral protease는 약 57%, acid protease는 약 55 %이었다.

  • PDF

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • 제48권4호
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.

Hydrolysates of lignocellulosic materials for biohydrogen production

  • Chen, Rong;Wang, Yong-Zhong;Liao, Qiang;Zhu, Xun;Xu, Teng-Fei
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.244-251
    • /
    • 2013
  • Lignocellulosic materials are commonly used in bio-$H_2$ production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-$H_2$ production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to $H_2$ by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-$H_2$ production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.