• Title/Summary/Keyword: $H_{2}$ production

Search Result 8,681, Processing Time 0.038 seconds

Production of Xylooligosaccharides with Thermostable Xylanases from the Streptomyces thermocyaneo-violaceus (내열성 방성균 Streptomyces thermocyaneoviloaceus 의 Xylanases를 이용한 자일로올리고당의 생산)

  • 이오석;최충식;최준호;주길재;이인구
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.221-226
    • /
    • 2001
  • Streptomyces themocyaneovio-laceus producing the thermostable xylanase was used for the production of xylooligosaccharides from xylan. The optimal conditions for the xylanase production were investigated in jar fermentor, which operated at 2 vvm aera-tion and 400 rpm agitation speed at $50^{\circ}C$ for 24 h. The optimal reaction condtion for the production of xylooli-gosaccharides with xylanases which were prepared by the percipitation with ammonium sulfate were obtained by the reaction at $60^{\circ}C$ for 12 h in the mixture composed of 10% birchwood xylan in 50 mM sodium phosphate buffer (pH 6.0)and 10 unit/ml of xylanase. In this optimal condition for the xylooligosaccharides production the mixture of xylooligosaccharides (58.8 g/I) which were composed of 20.1 g/I of xyobiose, 8.9 g/I of xylotriose 4.5 g/I of xylotetraose 16.2g/I of xylopentaose and 9.1 g/I xylohexaose and 5.0 g/I of xylose was produced from 100 g/I of birchwood xylan by the xylanases of S thermocyaneoviolaceus .

  • PDF

Proinflammatory Effects of Bacterial Lipopolysaccharide (LPS) in Rainbow Trout (Oncorhynchus mykiss) Macrophage Cells

  • Hong Suhee;Jeong Hyun Do
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.130-134
    • /
    • 2003
  • Proinflammatory effects of bacterial lipopolysaccharide (LPS) have been assessed by analysing the induction of two inflammatory genes, $interleukin-1\beta$ $(IL-1\beta)$ and cyclooxygenase-2 (COX-2), in rainbow trout (Oncorhynchus mykiss) macrophage cells. Production of a metabolite of arachidonic acid by COX-2, prostaglandin $E_2\;(PGE_2)$, was also analysed in macrophage cells after LPS stimulation. Northern blot analysis revealed that LPS $(5{\mu}g/mL)$ significantly upregulated $IL-1\beta$ (54 times) and COX-2 (40.7 times) gene expression in macrophage cells after 4 h stimulation. According to RT-PCR (Reverse Transcription Polymerase Chain Reaction) analysis, $IL-1\beta$ gene induction in LPS stimulated macrophage cells was started within 1h and significantly increased thereafter until 4h. Meanwhile, COX-2 gene induction by LPS was delayed in comparison with $IL-1\beta$ gene induction as a faint band was observed after 4h stimulation in head kidney macrophage cells. LPS also significantly increased $PGE_2$ production in head kidney leucocytes, presumably via activating COX-2 expression that metabolites arachidonic acid to $PGE_2$. In conclusion, it was demonstrated that LPS could induce two main inflammatory and immune related genes, $IL-1\beta$ and COX-2, and increase $PGE_2$ production in trout head kidney macrophage cells, representing a strong inflammatory activity.

Hydrogen gas production by fermentation from various organic wastewater using Clostridium butyricum NCIB 9576 and Rhodopseudomonas sphaeroides E15-1 (각종 유기성 폐수로부터 Clostridium butyricum 및 Rhodopseudomonas sphaeroides에 의한 수소생산)

  • Yoon, Young-Sue;Kim, Hyun-Kyung;Ryu, Hye-Yeon;Lee, In-Gu;Kim, Mi-Sun
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.29-41
    • /
    • 2000
  • Anaerobic fermentation using Clostridium butyricum NCIB 9576, and photo-fermentation using Rhodopseudomonas sphaeroides E15-1 were studied for the production of hydrogen from Makkoli, fruits (orange & apple, watermelon & melon) and Tofu wastewaters. From the Makkoli wastewater, which contained $0.94g/{\ell}$ sugars and $2.74g/{\ell}$ soluble starch, approximately $49mM\;H_2/{\ell}$ wastewater was produced during the initial 18h of the anaerobic fermentation with pH control between 6.5-7.0. Several organic acids such as butyric acid, acetic acid, propionic acid, lactic acid and ethanol were also produced. From Watemlelon and melon wastewater, which contained $43g/{\ell}$ sugars, generated about approximately $71mM\;H_2/{\ell}$ wastewater was produced during the initial 24 h of the anaerobic fermentation. Tofu wastewater, pH 6.5, containing $12.6g/{\ell}$ soluble starch and $0.74g/{\ell}$ sugars, generated about $30mM\;H_2/{\ell}$ wastewater, along with some organic acids, during the initial 24 h of anaerobic fermentation. Makkoli and Tofu wastewaters as substrates for the photo-fermentation by Rhodopseudomonas sphaeroides E15-1 produced approximately 37.9 and $22.2{\mu}M\;H_2/m{\ell}$ wastewaters, respectively for 9 days of incubation under the average of 9,000-10,000 lux illumination at the surface of reactor using tungsten halogen lamps. Orange and apple wastewater, which contained 93.4 g/l, produced approximately $13.1{\mu}M\;H_2/m{\ell}$ wastewater only for 2 days of photo-fermentation and the growth of Rhodopseudomonas sphaeroides E15-1 and hydrogen production were stopped.

  • PDF

Effect of $CH_4$ addition to the $H_2O$ plasma excited by VHF ICP for production of $H_2$ (고주파유도결합에 의해 여기된 물플라즈마로부터 고효율 수소생산을 위한 메탄가스 첨가효과)

  • Kim, Dae-Woon;Choo, Won-Il;Jang, Soo-Ouk;Jung, Yong-Ho;Lee, Bong-Ju;Kim, Young-Ho;Lee, Seung-Heun;Kwon, Sung-Ku
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.442-442
    • /
    • 2008
  • Hydrogen was produced by water plasma excited in very high frequency inductively coupled tube reactor. Mass spectrometry was used to monitor gas phase species at various process conditions. Water dissociation rate depend on the process parameters such as ICP power, flow-rate and pressure. Water dissociation percent in ICP reactor decrease with increase of chamber pressure and $H_2O$ flow rate, while increase with increase of ICP power. In our experimental range, maximum water dissociation rate was 65.5% at the process conditions of 265 mTorr, 68 sccm, and 400 Watt. The effect of $CH_4$ addition to a water plasma on the hydrogen production has been studied in a VHF ICP reactor. With the addition of $CH_4$ gas, $H_2$ production increases to 12% until the $CH_4$ flow rate increases up to 15 sccm. But, with the flow rate of $CH_4$ more than 20 sccm, chamber wall was deposited with carbon film because of deficiency of oxygen in gas phase, hydrogen production rate decreased. The main roles of $CH_4$ gas are to reacts with O forming CO, CHO and $CO_2$ and releasing additional $H_2$ and furthermore to prevent reverse reaction for forming $H_2O$ from $H_2$ and $O_2$. But, $CH_4$ addition has negative effects such as cost increase and $CO_x$ emission, therefore process optimization is required.

  • PDF

Identification of Factors Regulating Escherichia coli 2,3-Butanediol Production by Continuous Culture and Metabolic Flux Analysis

  • Lu, Mingshou;Lee, Soo-Jin;Kim, Bo-Rim;Park, Chang-Hun;Oh, Min-Kyu;Park, Kyung-Moon;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.659-667
    • /
    • 2012
  • 2,3-Butanediol (2,3-BDO) is an organic compound with a wide range of industrial applications. Although Escherichia coli is often used for the production of organic compounds, the wild-type E. coli does not contain two essential genes in the 2,3-BDO biosynthesis pathway, and cannot ferment 2,3-BDO. Therefore, a 2,3-BDO biosynthesis mutant strain of Escherichia coli was constructed and cultured. To determine the optimum culture factors for 2,3-BDO production, experiments were conducted under different culture environments ranging from strongly acidic to neutral pH. The extracellular metabolite profiles were obtained using high-performance liquid chromatography (HPLC), and the intracellular metabolite profiles were analyzed by ultra-performance liquid chromatography and quadruple time-of-flight mass spectrometry (UPLC/Q-TOF-MS). Metabolic flux analysis (MFA) was used to integrate these profiles. The metabolite profiles showed that 2,3-BDO production favors an acidic environment (pH 5), whereas cell mass favors a neutral environment. Furthermore, when the pH of the culture fell below 5, both the cell growth and 2,3-BDO production were inhibited.

Characteristics of Cellulose Production by Acetobacter sp. A9 in Static Culture (정치배양에서 Acetobacter sp. A9에 의한 셀룰로오스 생산특성)

  • 손홍주;이오미;김용균;박연규;이상준
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.573-577
    • /
    • 2000
  • The optimum fermentation conditions for the production of cellulose by a newly isolated Acetobacter sp. A9 were determined in static cultures. The strain was able to produce cellulose at $25-30^{\circ}C$ with a maximum at $30^{\circ}C$. Cellulose production occurred at pH 6.5-8.0 with a maximum at pH 6.5. The optimal culture medium was found to consists of 1.0% glucose, 1.0% yeast extract, 0.7% polypeptone, 0.15% acetic acid and 0.02% succinic acid. Cellulose production by Acetobacter sp. A9 followed the growth curve. Highest cellulose production, under optimum conditions, was $24.1m^2$, although this strain typically produced only $12.1 g/m^2$ in the basic medium. Cellulose production also depended on the depth and volume of the medium.

  • PDF

Effects of transport stress on physiological responses and milk production in lactating dairy cows

  • Hong, Heeok;Lee, Eunchae;Lee, In Hyung;Lee, Sang-Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.442-451
    • /
    • 2019
  • Objective: This study was conducted to investigate the effect of transport stress on physiological and hematological responses and milk performance in lactating dairy cows. Methods: Ten lactating dairy cows were randomly divided into 2 groups. The treatment group (TG) was transported 200 km for 4 h by truck, and the control group (NTG) was restrained by stanchion for 4 h in Konkuk University farm. Blood and milk samples were collected at 24 h pre-transport; 1, 2, and 4 h during transport; and 2, 24, and 48 h post-transport. Milk yields were measured at 24 h pre-transport, 0 h during transport, and 24, 48, and 72 h post-transport. Results: Leukocyte, neutrophil, and monocyte numbers in the TG were significantly higher than those of the NTG at each experimental time point. Lymphocyte numbers in the TG were significantly (p<0.05) higher than those of the NTG at 48 h post-transport. Additionally, the neutrophil:lymphocyte ratio of the TG was 45% and 46% higher than that of the NTG at 4 h during transport and 2 h post-transport, respectively. There were no significant differences in erythrocyte numbers, hemoglobin concentrations, platelet numbers, and hematocrit percentages between two groups. Cortisol levels in the TG were significantly (p<0.05) higher than those in the NTG. Milk yields in the TG were lower than those in the NTG. The somatic cell count (SCC) of the TG was significantly (p<0.05) higher than that of the NTG at 1 and 2 h during transport; that of the TG increased dramatically at 1 h during transport and gradually decreased subsequently. Conclusion: Transport stress increased blood parameters including leucocyte, neutrophil, and monocyte numbers by increased cortisol levels, but did not affect erythrocytes, hemoglobin and hematocrit levels. Additionally, transport resulted in a decrease in milk yield and reduced milk quality owing to an increase in milk SCC.

Influences of Culture Medium Components on the Production Poly (γ-Glutamic Acid) by Bacillus subtilis GS-2 Isolated Chungkookjang (청국장에서 분리한 Bacillus subtilis GS-2에 의한 Poly(γ-Glutamic Acid) 생산의 최적 배양조건)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Kwan-Pil;Yi, Dong-Heui
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.677-684
    • /
    • 2012
  • A bacterium strain GS-2 isolated from the Korean traditional seasoning food, Chungkookjang and was determined to produce large amounts of ${\gamma}$-PGA with high productivity when provided with simple nutrients (L-glutamic acid 2.0%, glucose 1.0%, $NH_4Cl$ 0.5%, $KH_2PO_4$ 0.05%, $MgSO_4{\cdot}7H_2O$ 0.01%, pH 7.0). In this study, the culture medium for this strain was optimized for the production of ${\gamma}$-PGA. The Bacillus subtilis GS-2 required supplementation with L-glutamic acid and other nutrients for maximal production of ${\gamma}$-PGA. The optimal culture conditions for ${\gamma}$-PGA production were a 48 hr culture time, a temperature of $33^{\circ}C$ and initial pH of 6.5 by rotary shaking (220 rpm). A maximum ${\gamma}$-PGA production of 31.0 $g/{\ell}$ was obtained with L-glutamic acid (30 $g/{\ell}$), sucrose (the main carbon source, 30 $g/{\ell}$), $NH_4Cl$ (the main nitrogen source, 2.5 $g/{\ell}$), $KH_2PO_4$ (1.5 $g/{\ell}$) and $MgSO_4{\cdot}7H_2O$ (0.15 $g/{\ell}$) in the culture medium.

Optimizing Culture Conditions to Maximize the Production of Laccase from Pholiota highlandensis (Pholiota highlandensis 유래 laccase 생산을 위한 배양조건의 최적화)

  • Choi, Hye-Ju;Moon, Soo-Jung;Jeon, Sung-Jong
    • Journal of Life Science
    • /
    • v.25 no.6
    • /
    • pp.673-679
    • /
    • 2015
  • The culture conditions needed to maximize the production of laccase from Pholiota highlandensis mycelia were investigated. Among the tested media for laccase production, Coriolus versicolor medium (CVM; 2% dextrose, 0.4% peptone, 0.6% yeast extract, 0.046% KH2PO4, 0.1% K2HPO4, 0.05% MgSO4·7H2O) showed the highest activity for the enzyme. Then, to optimize culture conditions for laccase activity, the influences of various carbon, nitrogen, phosphorus, and inorganic salt sources in CVM were investigated. The optimum culture medium was 2% fructose, 0.4% peptone with 0.6% yeast extract, 0.05% NaH2PO4, and 0.05% MgSO4·7H2O as carbon, nitrogen, phosphorus, and inorganic salt sources, respectively. Several aromatic compounds in the medium enhanced laccase activity to varying degrees. Guaiacol induced maximum laccase production, yielding 114.1 U/ml laccase activity after cultivation for 11 days at 25℃. The optimum pH and temperature for laccase production were 8.0 and 35℃, respectively. Native polyacrylamide-gel electrophoresis (PAGE) followed by laccase-activity staining with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as the substrate was performed to identify the presence of laccase under the optimum conditions studied. Zymogram analysis of the supernatant culture showed an enzymatic band with a molecular mass of about 90 kDa.

Production of Laccase by Trametes sp. CJ-105 (Trametes sp. CJ-105에 의한 Laccase 생산)

  • 오광근;김현수;이재흥;전영중
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.477-483
    • /
    • 1999
  • For Trametes sp. CJ-105, a kind of white-rot fungi which was collected from the mountain of Korea and was proven to be effective in decolorizing a wide range of structurally different synthetic dyes, the optimum conditions for mycelial growth and laccase(E.C. 1.10.3.2) production were investigated. Among various carbon sources, glucose showed the highest potential for the mycelial growth and laccase production, the optimum concentration being 2% glucose. For the nitrogen source, asparagine was good for the mycelial growth, while ammonium tartrate for laccase production(optimum concentration: 0.04%). The addition of thiamine and biotin increased both th emycelial growth and laccase production. When 2,5-xylidine was added as an inducer after the first day of culture, the production of alccase was seven-times higher than that in the absence of the inducer. The optimum pH and temperature conditions for laccase production by Trametes sp. CJ-105 were pH 5.0 and $25^{\circ}C$, respectively. In the 5L fermentation, the production of laccase reached a maximum of 340U/ml at the time when the ammonium ion was being rapidly depleted.

  • PDF