• Title/Summary/Keyword: $H_{\infty)$ control

Search Result 704, Processing Time 0.028 seconds

Control of Active Suspension System Using $H_{inf}$ And Adaptive Robust Control ($H_{inf}$와 로버스트 적응 제어기를 이용한 능동 현가 시스템의 제어)

  • Bui, Trong Hieu;Nguyen, Tan Tien;Park, Soon-Sil;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.694-699
    • /
    • 2001
  • This paper presents a control of active suspension system for quarter-car model with two-degree-of-freedom using $H_{inf}$ and nonlinear adaptive robust control method. Suspension dynamics is linear and treated by $H_{inf}$ method which guarantees the robustness of closed loop system under the presence of uncertainties and minimizes the effect of road disturbance to system. An Adaptive Robust Control (ARC) technique is used to design a force controller such that it is robust against actuator uncertainties. Simulation results are given for both frequency and time domains to verify the effectiveness of the designed controllers.

  • PDF

Identification and Robust $H_\infty$ Control of the Rotational/Translational Actuator System

  • Tavakoli Mahdi;Taghirad Hamid D.;Abrishamchian Mehdi
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.387-396
    • /
    • 2005
  • The Rotational/Translational Actuator (RTAC) benchmark problem considers a fourth-order dynamical system involving the nonlinear interaction of a translational oscillator and an eccentric rotational proof mass. This problem has been posed to investigate the utility of a rotational actuator for stabilizing translational motion. In order to experimentally implement any of the model-based controllers proposed in the literature, the values of model parameters are required which are generally difficult to determine rigorously. In this paper, an approach to the least-squares estimation of the parameters of a system is formulated and practically applied to the RTAC system. On the other hand, this paper shows how to model a nonlinear system as a linear uncertain system via nonparametric system identification, in order to provide the information required for linear robust $H_\infty$ control design. This method is also applied to the RTAC system, which demonstrates severe nonlinearities, due to the coupling from the rotational motion to the translational motion. Experimental results confirm that this approach can effectively condense the whole nonlinearities, uncertainties, and disturbances within the system into a favorable perturbation block.

Web Guide Process in Cold Rolling Mill : Modeling and PID Controller

  • Ahn, Byoung-Joon;Park, Ju-Yong;Chang, Yu-Shin;Lee, Man-Hyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1074-1085
    • /
    • 2004
  • There are many intermediate web guides in cold rolling mills process such as CRM (cold rolling mill), CGL (continuous galvanizing line), EGL (electrical galvanizing line) and so on. The main functions of the web guides are to adjust the center line of the web (strip) to the center line of the steel process. So they are called CPC (center position control). Rapid process speed cause large deviation between the center position of the strip and the process line. Too much deviation is not desirable. So the difference between the center position of the strip and the process line should be compensated. In general, the center position control of the web is obtained by the hydraulic driver and electrical controller. In this paper, we propose modelling and several controller designs for web-guide systems. We model the web and guide by using geometrical relations of the guide ignored the mass and stiffness of the web. To control the systems, we propose PID controllers with their gains tuned by the Ziegler-Nichols method, the H$\_$$\infty$/ controller model-matching method, and the coefficient diagram method (CDM). CDM is modified for high order systems. The results are verified by computer simulations.

Strategy for the Seamless Mode Transfer of an Inverter in a Master-Slave Control Independent Microgrid

  • Wang, Yi;Jiang, Hanhong;Xing, Pengxiang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.251-265
    • /
    • 2018
  • To enable a master-slave control independent microgrid system (MSCIMGS) to supply electricity continuously, the microgrid inverter should perform mode transfer between grid-connected and islanding operations. Transient oscillations should be reduced during transfer to effectively conduct a seamless mode transfer. This study uses a typical MSCIMGS as an example and improves the mode transfer strategy in three aspects: (1) adopts a status-tracking algorithm to improve the switching strategy of the outer loop, (2) uses the voltage magnitude and phase pre-synchronization algorithm to reduce transient shock at the time of grid connection, and (3) applies the hybrid-sensitivity $H_{\infty}$ robust controller instead of the current inner loop to improve the robustness of the controller. Simulations and experiments show that the proposed strategy is more practical than the traditional proportional-derivative control mode transfer and effective in reducing voltage and current oscillations during the transfer period.

Generator Excitor Control Using Robust Control (강인제어이론을 이용한 발전기 여자 시스템)

  • Hong, Hyun-Mun;Jeong, Su-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • This thesis proposes a robust controller introducing the $H_{\infty}$ control theory, one of the robust control theories that can obtain desired control performance while ensuring robustness for the uncertainty and disturbance contained in the power system. This thesis also proposes an improved digital exciter control system for a synchronized generator using a digitally designed controller. Simulation to verify the usefulness of the proposed method was carried. Results show that the proposed control system manifests excellent control performance compared to existing control systems.

Memoryless Feedback Temperature Control of an Extruder by the Switching Actuating Value

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.100.2-100
    • /
    • 2001
  • In this paper, we presented a switching-based control algorithm for improving the speed of response on temperature control of an extruder. We proposed a switching actuating value method in a temperature control of extruder and showed the effect of H$\infty$ control and PID control. Recently, the memoryless feedback control had proposed, which was not only the real time integration element, but also the memory elements. We examined the application of a switching actuating value method to a memoryless feedback, in a unit barrel temperature control of an extruder.

  • PDF

Robust Control for Networked Control Systems with Admissible Parameter Uncertainties

  • Ji, Kun;Kim, Won-Jong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.372-378
    • /
    • 2007
  • This paper discusses Robust $H{\infty}$ control problems for networked control systems (NCSs) with time delays and subject to norm-bounded parameter uncertainties. Based on a new discrete-time model, two approaches of robust controller design are proposed. A numerical example and experimental verification with an NCS test bed are given to illustrate the feasibility and effectiveness of proposed design methodologies.

The design of the robust hybrid controller for the construction using an active dynamic vibration absorber

  • Lee, Sang-Kyu;Lee, Jin-Ho;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.4-75
    • /
    • 2001
  • This paper designs the robust hybrid controller for the multi degree-of-freedom system having uncertainty caused by modeling error and disturbances. The controlled plant is the construction which has an active dynamic vibration absorber on the top and is excited by the El Centre earthquake at the base. The active controller designed by the LQR(Linear Quadratic Regulator) and H-infinity control theory. The robustness of the hybrid H$\infty$ controller is compared with that of the hybrid LQ controller from computer simulation.

  • PDF

Optimal Design of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 최적설계)

  • Kim Seung Youal;Lee Keum Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.1 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • Deadbeat property is well established in digital control system design in time domain. But in continuous time system, deadbeat is impossible because of it's ripples between sampling points inspite of designs using the related digital control system design theory. But several researchers suggested delay elements. A delay element is made from the concept of finite Laplace Transform. From some specifications such as internal model stability, physical realizations as well as finite time settling, unknown coefficents and poles in error transfer functions with delay elements can be calulted so as to satisfy these specifications. For the application to the real system, robustness property can be added. In this paper, error transfer function is specified with 1 delay element and robustness condition is considered additionally. As the criterion of the robustness, a weighted sensitive function's $H_{infty}$ norm is used. For the minimum value of the criterion, error transfer function's poles are calculated optimally. In this sense, optimal design of the continuous time deadbeat controller is obtained.

  • PDF