• Title/Summary/Keyword: $H^\infty$control

Search Result 704, Processing Time 0.025 seconds

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

A Study of Robust Vibration Control for a Multi-Layer Structure (다층상구조물의 강인 진동제어에 관한 연구)

  • Kim, Chang-Hwa;Jung, Byung-Gun;Jung, Hae-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1212-1219
    • /
    • 2009
  • In this paper, a state feedback gain controller using linear matrix inequality(LMI) for the multi-objective synthesis is designed, in the multi-layer structure with integral type servo system. The design objectives include $H_{\infty}$ performance, asymptotic disturbance rejection, time-domain constraints, on the closed-loop pole location. The results of computer simulation show the validity of the designed controller.

A Target State Estimator Design to Improve the Gun Driving Command (포 구동명령 개선을 위한 표적상태 추정기 설계)

  • Lee, Seok-Jae;Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1053-1059
    • /
    • 2007
  • This paper presents a target sate estimator(TSE) with low pass filter for improving the gun driving command. The ballistic computer uses target information such as predicted range, velocity, acceleration of a target to generate the gun command. We adopt the finite impulse response(FIR) filter as our TSE to shorten calculation time for the driving command and due to its inherent stability property. We also introduce a post-processing filter to reduce the high frequency components in the output signal of a TSE which may cause instability of gun driving. The first order low pass filter has been designed based on $H{\infty}$ criteria considering the noise characteristics. To show the validity of the present scheme, simulation results are given for the overall gun driving system including aircraft target information.

Identification of hard bound on model uncertainty in frequency domain

  • Kawata, M.;Sano, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.372-377
    • /
    • 1993
  • In this paper, we investigate a set-membership identification approach to the quantification of an upper bound of model uncertainty in frequency domain, which is required in the H$_{\infty}$ robust control system design. First we formulate this problem as a set-membership identification of a nominal model error in the presence f unknown noise input with unknown bound, while the ordinary set-membership approaches assume that an upper bound of the uncertain input is known. For this purpose, the proposed algorithm includes the estimation of the bound of the uncertain input. thus the proposed method can obtain the hard bound of the model error in frequency domain as well as a parametric lower-order nominal model. Finally numerical simulation results are shown to confirm the validity of the presented algorithm..

  • PDF

Robust model matching design using normalized left coprime factorization approach

  • Hanajima, Naohiko;Eisaka, Toshio;Yanagita, Yoshiho;Tsuchiya, Takeshi;Tagawa, Ryozaburo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.360-365
    • /
    • 1993
  • In this paper, we propose a new design procedure of the Robust Model Matching(RM) using the Normalized Left Coprime Factorization (NLCF) approach. The RMM aims at reducing the sensitivity of a given control system, but standard design procedures are not for robust stability. Therefore we try applying the robust stability condition based on NLCF to RMM procedure. We first formulate the RMM using the robust stability condition of NLCF approach, then we propose the new procedure of the RMM. The point is that the condition includes the measure of sensitivity of the RMM. In the proposed procedure, a cost function is determined through the condition and solved by H$_{\infty}$ contro technique. Finally we show a design example and check the performance..

  • PDF

Robust Controller Design and Analysis Using Disturbance Observer and Integral Control (외란 관측기와 적분제어기를 이용한 강인 제어기 설계 및 분석)

  • Park, Hong-Seob;Lee, Chung-Woo;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.514-516
    • /
    • 2005
  • 압전 구동기(Piezo actuator)는 수 나노미터 수준의 위치정밀도와 고분해능을 가지고 있으나 비선형 특성인 히스테리시스(Hysteresis)는 정상상태에서 위치 오차를 발생하는 주요 원인이 된다. 현재까지 히스테리시스를 보상하기 위해 피 프 포워드 제어 방법, Pl 제어 방법, $H_{\infty}$제어 방법 등이 연구되어 왔지만 저주파 대역의 외란(disturbance)까지 고려하여 시스 템을 주파수 영역에서 설계, 분석하는 방법에 대한 연구는 미흡하였다. 본 논문은 압전 구동기의 위치 제어를 위한 제어기의 설계와 이를 주파수 영역에서 분석하는 내용을 다룬다. 제어기의 설계는 히스테리시스를 보상하기 위해 극점 배치 방법과 외란 관측기(Disturbance observer)를 기본으로 하였으며 적분제어를 적용하여 시스템 민감도(sensitivity)를 개선하였다. 시뮬레이션과 실험을 통하여 설계한 제어기가 히스데리시스에 대한 보상과 민감도의 개선에 효율적임을 검증하였다.

  • PDF

Robust Controller Design of Nuclear Power Reactor by Parametric Method

  • Yoon-Joon Lee;Man-Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • The robust controller for the nuclear reactor power control system is designed. Since the reactor model is not exact, it is necessary to design the robust controller that can work in the real situations of perturbations. The reactor model is described in the form of transfer function and the bound of each coefficient is determined to set up the linear interval system. By the Kharitonov and the edge theorem, a frequency based design template is made and applied to the determination of the controller. The controller designed by this method is simpler than that obtained by the H$_{\infty}$. Although the controller is designed with the basis of high power, it could be used even at low power.n at low power.

A Study on the Design Method of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 설계방법 고찰)

  • 김성열;이금원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.326-326
    • /
    • 2000
  • Continuous time system deadbeat controller(CdbC) has been studied mainly since 1992 especially by Japan researchers. They suggested delay elements. These elements stem from the finite Laplace Transform which is the starting point in deadbeat control system design in continuous time system. Every transfer function is established by these elements. From some conditions such as internal model stability and peasibility of a CdbC controller. unknown polynomials or coefficients can be calculated. In this paper, optimal pole placement of the closed loop system is suggested. From this. a CdbC controller with lower order can be obtained which attains the same level of weighted sensitivity function's H$_{\infty}$ norm used as a measure of the robustness property as existing CdbCs.

  • PDF

Robust Control for a Ultra-Precision Stage System (초정밀 스테이지의 강인 제어)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1094-1101
    • /
    • 2006
  • Recently, a ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator and ultra-precision linear encoder, is designed and developed. The system transfer function of the ultra-precision stage system was derived from the step responses of the system using system identification tool. A $H_{\infty}$ controller was designed using loop shaping method to have robustness for the system uncertainty and external disturbances. For the designed controller, simulations were performed and it was applied to the ultra-precision stage system. From the experimental results it was found that this stage could be controlled with less than 5nm resolution irrespective of hysteresis and creep.

The μ-synthesis and analysis of water level control in steam generators

  • Salehi, Ahmad;Kazemi, Mohammad Hosein;Safarzadeh, Omid
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.163-169
    • /
    • 2019
  • The robust controller synthesis and analysis of the water level process in the U-tube system generator (UTSG) is addressed in this paper. The parameter uncertainties of the steam generator (SG) are modeled as multiplicative perturbations which are normalized by designing suitable weighting functions. The relative errors of the nominal SG model with respect to the other operating power level models are employed to specify the weighting functions for normalizing the plant uncertainties. Then, a robust controller is designed based on ${\mu}$-synthesis and D-K iteration, and its stability robustness is verified over the whole range of power operations. A gain-scheduled controller with $H_{\infty}$-synthesis is also designed to compare its robustness with the proposed controller. The stability analysis is accomplished and compared with the previous QFT design. The ${\mu}$-analysis of the system shows that the proposed controller has a favorable stability robustness for the whole range of operating power conditions. The proposed controller response is simulated against the power level deviation in start-up and shutdown stages and compared with the other concerning controllers.