• Title/Summary/Keyword: $Gd^{3+}$ ion

Search Result 65, Processing Time 0.021 seconds

Energy Transfer Pathway in Luminescent Lanthanide Complexes Based on Dansyl-N-methylaminobenzoic Acid through Intramolecular Charge Transfer State for Near Infrared Emission

  • Roh, Soo-Gyun;Baek, Nam-Seob;Kim, Yong-Hee;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1249-1255
    • /
    • 2007
  • We have investigated the photophysical properties of dansyl-N-methylaminobenzoic acid (DABAH) as a ligand and its lanthanide (Ln3+)-cored complexes (Ln3+-(DABA)3(terpy)) in order to determine the main energy transfer pathway for sensitized near infrared emission of Ln3+ ions (Ln3+ = Nd3+ and Er3+) in Ln3+- (DABA)3(terpy). The fluorescence spectrum of DABAH shows a large Stokes shift with increasing solvent polarity. This large Stokes shift might be due to the formation of a twisted intramolecular charge transfer (TICT) state, as demonstrated by the large dipole moment in the excited state. It is in good agreement with the result that the phosphorescence even in the Gd3+-cored complex based on the DABAH ligand was not observed, maybe due to the highly forbidden character of the S1 → T1 transition in the DABAH ligand. A short decay component (ca. 1 ns) was observed in Er3+-(DABA)3(terpy) whereas the fluorescence lifetimes of DABAH and its Gd3+-(DABA)3(terpy) are observed about ~10 ns. The short component could be originated from the energy transfer process between the ligand and the Ln3+ ion. Based on the fluorescence of DABAH its Ln3+- (DABA)3(terpy), the sensitization of Ln3+ luminescence in the Ln3+-(DABA)3(terpy) takes place by the energy transfer via the TICT state of DABAH in the excited singlet state rather than via the excited triplet state.

The Synthesis and MR Properties of New Macromolecular MR Contrast Agent (새로운 거대분자 MR 조영제의 합성 및 MR 특성에 관한 연구)

  • 장용민;장영환;황문정;박현정;전경녀;이종민;배경수;강봉석
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Purpose : To evaluate the NMR relaxation properties and imaging characteristics of tissue-specificity for a newly developed macromolecular MR agent. Materials and methods : Phthalocyanine (PC) was chelated with paramagnetic ion, Mn.2.01g (5.2 mmol) of Phthalocyanine was mixed with 0.37g (1.4 mmol) of Mn chloride at $310^{\circ}C$ for 36 hours and then purified by chromatography (CHC13/CH3OH 98/2 v/v, Rf, 0.76) to obtain 1.04g (46%) of MnPC (molecular weight= 2000d). The $T1}T2$ relaxivity of MnPC was measured in 1.5T(64 MHz) MR using 0.1 mM MnPC. The MR image characteristics of MnPC was evaluated using spin-echo (TR/TE=500/14 msec) and gradient-echo (FLASH) (TR/TE=80/4 msec, flip angle=60) techniques in 1.57 MR scanner. The images of rabbit liver were obtained every 10 minutes up to 4 hours. To study the effect of concentration on image, 20 mM, 50 mM, 100 mM of MnPC were tested. Results : The relaxivities of MnPC at 1.5T(64MHz) were Rl=7.28 $mM^{-1}S^{-1},{\;}R2=55.56mM^{-1}S^{-1}$. Compared to the values of Gd-DTPA (Rl[=4.8 $mM^{-1}S^{-1})$], R2[=5.2 $mM^{-1}S^{-1}])$]), both T1/T2 relaxivities of MnPC were higher than those of Gd-DTPA. For both of SE and FLASH techniques, the contrast enhancement reached maximum at 10 minutes after bolus injection and the enhancement continued for more than 2 hours. When compared with small molecular weight liver agents such as Gd-EOB-DTPA, Gd-BOPTA and MnDPDP, MnPC was characterized by more prolonged enhancement time. The time course of MR images also revealed biliary excretion of MnPC. Conclusion : We developed a new macromolecular MR agent, MnPC. The relaxivities of MnPC were higher than those of small molecular weight Gd-chelate. Hepatic uptake and biliary excretion of MnPC suggests that this agent is a new liver-specific MR agent.

  • PDF

A Study on the Adsorption of Rare Earth Elememts by Raw and Crosslinked Chitosan (천연 및 가교 키토산에 의한 희토류 원소의 흡착과 회수에 관한 연구)

  • Cho, Sung-Ill;Choi, Jong-Moon;Kim, Young-Sang;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.108-116
    • /
    • 2004
  • The adsorption characteristics of raw and crosslinked chitosan for rare earth elements (REEs) have been studied. The range of optimum pH for the maximum adsorption was observed: pH 4.5~5.5 for $Nd^{3+}$, $Tm^{3+}$ on raw and crosslinked chitosan; pH 4.0~5.5 for $La^{3+}$ and $Ce^{3+}$ on crosslinked chitosan and pH 2.0 for those on raw chitosan. The adsorption rate of REE at pH 4.0 has been found in the order of $Er^{3+}$ > $Gd^{3+}$ > $Yb^{3+}$ > $Nd^{3+}$ > $Lu^{3+}$ > $Eu^{3+}$ > $Tm^{3+}$ > $Ho^{3+}$ > $Dy^{3+}$ > $La^{3+}$ > $Ce^{3+}$ > $Y^{3+}$ > $Pr^{3+}$ in single metal system and that of $Lu^{3+}$ > $Yb^{3+}$ > $Tm^{3+}$ > $Dy^{3+}$ > $Ho^{3+}$ > $Er^{3+}$ > $Eu^{3+}$ > $Gd^{3+}$ > $Nd^{3+}$ > $Y^{3+}$ > $La^{3+}=Ce^{3+}=Pr^{3+}$ in multi metal system. In the competitive adsorption of multi metal system, the amount of metal adsorption generally increased with increasing atomic number and with decreasing ionic radius. On the adsorption studies of metal ions on chitosan, the time of equilibrium adsorption which was reached at the maximum adsorption was about 5 hours. 83~95 % for $Nd^{3+}$ ion and 90~106 % for $Tm^{3+}$ ion, were recovered from the crosslinked chitosan.

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

Electrochemical study on the Lanthanide-Alizarin Complexone Complexes (란탄족원소-ALC 착물의 전기화학적 연구)

  • Son, Byeong-Chan;Kim, Jae-Gyun;Park, Jong-Min
    • The Journal of Natural Sciences
    • /
    • v.7
    • /
    • pp.37-46
    • /
    • 1995
  • Electrochemical behavior of $Ln^{3+},$-ALC complexes($Gd^{3+},$ $Tb^{3+},$ $Dy^{3+},$ $Ho^{3+},$ $Er^{3+},$ $Yb^{3+}$ and $Lu^{3+}$-alizarin complex-one) has been investgated by d.c polarography, differential pulse polarography and cyclic voltammetry. The reduction mechanism of ALC comes to the conclusion that the two electron make one step of reversible processes, and that there is few adsorption in the electrode reaction. The new complex is made from one lanthanide ion and one ALC. This complex is proven to make an adsorptive complex wave, by the experiments of differential pulse polarography and cyclic voltammetry. The reduction potential of complex wave($P_2$)turns up more negatively than ligand wave($P_1$) does. Linear calibration curves of the decreasing P1 and increasing $P_2$ is obtained when the lanthanide concentration varys from $2.5X10^5$M to $1X10^4M$.

  • PDF

Thermal Ion Mass Spectrometry with Isotope Dilution Method: An application to Rare Earth Element Geochemistry (동위원소희석법을 이용한 열이온 질량분석: 희토류원소 지구화학에의 응용)

  • ;;;增田彰正
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.190-201
    • /
    • 2001
  • Isotope Dilution Mass Spectrometry(IDMS) is one of the analytical method which uses enriched isotope spikes and analyzes the abundance of element by comparison of the spectrum between spiked mass and non-spike mass. Especially, the Thermal Ion Mass Spectrometry with isotope dilution technique (in general ID-TIMS) is the most accurate method of the chemical analysis, which enables us to obtain the data better than 1% in accuracy and precision. In IDMS, enriched isotope spike is one of the most important factor in order to obtain the best data. For rare earth elements, in general, a mixture of /sup 138/La, /sup 142/Ce, /sup 145/Nd, /sup 149/Sm, /sup 151/Sm, /sup 151/Eu, /sup 157/Gd, /sup 163/Dy, /sup 167/Er, /sup 171/Yb, and /sup 176/Lu is used as composite spike. IDMS is very useful in geochronology and REE geochemistry. Especially, it is very effective in studying the “tetrad effect” of rare earth elements in natural samples.

  • PDF

Pt-Ru, Pt-Ni bi-metallic catalysts for heavy hydrocarbon reforming (고 탄화수소 개질을 위한 Pt-Ru, Pt-Ni 이원금속촉매에 관한 연구)

  • Lee, Sanghp;Bae, Joongmyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.97.2-97.2
    • /
    • 2011
  • Pt-Ru and Pt-Ni bimetallic catalysts were prepared and tested for heavy hydrocarbon reforming. Metals were supported on CGO($Ce_{0.8}Gd_{0.2}O_{2.0-x}$) by incipient wetness method. The prepared catalysts were characterized by Temperature programmed reduction(TPR). Oxidative steam reforming of n-dodecane was conducted to compare the activity of the catalysts. The reforming temperature was varied from $500^{\circ}C$ to $800^{\circ}C$ at fixed $O_2$/C of 0.3, $H_2O$/C of 3.0 and GHSV of 5,000/h.Reduction peaks of metal oxide, surface CGO and bulk CGO were detected. Reduction temperature of metal oxide decreased over the bi-metallic catalysts. It is considered that interaction between metals leads to decrease interaction between metal and oxygen. On the other hands, reduction temperatures of surface CGO were dectected in the order of Pt-Ru > Pt-Ni > Pt. low reduction temperatures of surface CGO indicates the low activation energy for oxygen ion conduction to metal. Oxygen ion conduction is known as de-coking mechanism of ionic conducting supports such as CGO. In activity test, fuel conversion was in the same order of Pt-Ru > Pt-Ni > Pt. Especially, 100% of fuel conversion was obtained over Pt-Ru catalysts at $500^{\circ}C$.

  • PDF

Establishment and application of standard-RSF for trace inorganic matter mass analysis using GD-MS (GD-MS 분석 장비를 활용한 극미량 무기물 질량 분석을 위한 표준RSF 구축 및 응용)

  • Jang, MinKyung;Yang, JaeYeol;Lee, JongHyeon;Yoon, JaeSik
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.240-246
    • /
    • 2018
  • The present study analyzed standard samples of three types of aluminum matrix certified reference materials (CRM) using GD-MS. Calibration curves were constructed for 13 elements (Mg, Si, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sn, and Pb), with the slope representing the relative sensitivity factor (RSF). The x- and y-axes of the calibration curve represented ion beam ratio (IBR) and the authenticated value of the standard sample, respectively. In order to evaluate precision and linearity of the calibration curve, RSD and the coefficient of determination were calculated. Curve RSD for every element reflected high precision (within 10 %). For most elements, the coefficient of determination was ${\geq}0.99$, indicating excellent linearity. However, vanadium, nickel, and gallium curves exhibited relatively low linearity (0.90~0.95), likely due to their narrow concentration ranges. Standard RSF was calculated using the slope of the curve generated for three types of CRM. Despite vanadium, nickel, and gallium exhibiting low coefficients of determination, their standard RSF resembled that of the three types of CRM. Therefore, the RSF method may be used for element quantitation. Standard iron matrix samples were analyzed to verify the applicability of the aluminum matrix standard RSF, as well as to calculate the RSD-estimated error of the measured value relative to the actual standard value. Six elements (Al, Si, V, Cr, Mn, and Ni) exhibited an RSD of approximately 30 %, while the RSD of Cu was 77 %. In general, Cu isotopes are subject to interference: $^{63}Cu$ to $^{54}Fe^{2+}-^{36}Ar$ and $^{65}Cu$ to $^{56}Fe-Al^{3+}$ interference. Thus, the influence of these impurities may have contributed to the high RSD value observed for Cu. To reliably identify copper, the resolution should be set at ${\geq}8000$. However, high resolutions are inappropriate for analyzing trace elements, as it lowers ion permeability. In conclusion, quantitation of even relatively low amounts of six elements (Al, Si, V, Cr, Mn, and Ni) is possible using this method.

The Elution Behavior of Rare Earth Elements in Diethylene Triamine N,N,N',N',N (陰 Ion 交換樹脂에 依한 稀土類元素의 溶離行動에 關한 硏究)

  • Oh Jin Jung;Il Doo Kim;Gyou Soo Lee;Ki-Won Cha
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.47-53
    • /
    • 1984
  • The separation of the rare earth elements with diethylene triamine N, N, N', N', N"-pentaacetic acid (DTPA) as eluent was carried out at different pH and concentrations by using anion exchange resin column. The rare earth elements were absorbed on the upper of the resin column and the best condition of the separation behavior was 0.025M of DTPA at pH 8.35. The elution order of the rare earths was in the order of the atomic number of the rare earth elements except samarium. The resolution of adjacent rare earth elements that have been separated with 0.025M-DTPA as eluent, was from 3.03 to 1.25 at pH 8.35. Resolution of Ce-Pr was maximum value in 3.03 and Eu-Gd was minimum in 1.25 at condition mentioned above, respectively. The resolution of rare earth elements separated with 0.025M DTPA eluent was very good at pH range of 8.0~8.6.

  • PDF

CF4/O2/Ar Plasma Resistance of Al2O3 Free Multi-components Glasses (Al2O3 Free 다성분계 유리의 CF4/O2/Ar 내플라즈마 특성)

  • Min, Kyung Won;Choi, Jae Ho;Jung, YoonSung;Im, Won Bin;Kim, Hyeong-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.57-62
    • /
    • 2022
  • The plasma resistance of multi-component glasses containing La, Gd, Ti, Zn, Y, Zr, Nb, and Ta was analyzed in this study. The plasma etching was performed via inductively coupled plasma-reactive ion etching (ICP-RIE) using CF4/O2/Ar mixed gas. After the reaction, the glass with a low fluoride sublimation temperature and high content of P, Si, and Ti elements showed a high etching rate. On the other hand, the glass containing a high fluoride sublimation temperature component such as Ca, La, Gd, Y, and Zr exhibited high plasma resistance because the etch rate was lower than that of sapphire. Glass with low plasma resistance increased surface roughness after etching or nanoholes were formed on the surface, but glass with high plasma resistance showed little change in surface microstructure. Thus, the results of this study demonstrate the potential for the development of plasma-resistant glasses (PRGs) with other compositions besides alumino-silicate glasses, which are conventionally referred to as plasma-resistant glasses.