• Title/Summary/Keyword: $G^1$ Surface

Search Result 4,051, Processing Time 0.029 seconds

Flows over Concave Surfaces: Development of Pre-set Wavelength Görtler Vortices

  • Winoto, S.H.;Tandiono, Tandiono;Shah, D.A.;Mitsudharmadi, H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.10-23
    • /
    • 2008
  • The development of pre-set wavelength G$\ddot{o}$rtler vortices are studied in the boundary-layer flows on concave surfaces of 1.0 and 2.0 m radius of curvature. The wavelengths of the vortices were pre-set by thin wires of 0.2 mm diameter placed 10 mm upstream and perpendicular to the concave surface leading edge. Velocity contours were obtained from velocity measurements using a single hot-wire anemometer probe. The most amplified or dominant wavelength is found to be 15 mm for free-stream velocity of 2.1 m/s and 3.0 m/s on the concave surface of R = 1 m and 2 m, respectively. The velocity contours in the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different regions can be identified based on the growth rate of the vortices. The occurrence of a secondary instability mode is also shown in the form of mushroom-like structures as a consequence of the non-linear growth of the G$\ddot{o}$rtler vortices. By pre-setting the vortex wavelength to be much larger and much smaller than the most amplified one, the splitting and merging of G$\ddot{o}$rtler vortices can be respectively observed.

Infiltration and Percolation Characteristics of Water in Agricultural Land Filled with Rock-Dust (암분 매립 농경지 토양의 표면 침투 및 삼투 특성)

  • Hur, S.O.;Jeon, S.H.;Lee, Y.J.;Han, K.H.;Jo, H.R.;Kang, S.S.;Kim, M.S.;Ha, S.G.;Kim, J.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.40-44
    • /
    • 2009
  • This study was carried for the understanding of infiltration and percolation characteristics of water in agricultural land filled with rock-dust (Technosols). The experiment was performed at two sites (A, B), and soil horizons of the sites were classified with 4 layers, respectively. The soil texture of all soil horizons was analyzed with silt loam (SiL) except for the soil texture, which was loamy sand (LS), at the lowest horizon of measurement site A. The bulk densities at each horizon of two soils were mostly over $1.49g{\cdot}cm^{-3}$, which is very higher than $1.25g{\cdot}cm^{-3}$ of typical medium-textured mineral soil, except for the surface of site A measured immediately after tillage. The concentrations of $P_2O_5$ at surface of two soils s were 1962 (A), 1613 (B) $mg{\cdot}kg^{-1}$, respectively. These concentrations are 3.2~6.5 times of $300{\sim}500mg{\cdot}kg^{-1}$, which is the optimum concentration for crop growth. Infiltration rates at surface of the soils were 3.54 (A), 2.85 (B) cm $hr^{-1}$, but percolation rates at soil horizons under the surface were below 0.3 (A), below 0.003 (B) cm $hr^{-1}$. These results would be because the surface soils were managed by tillage and crop planting etc., but soils under surface were formed with structural problems occurred at the formation time of agricultural land accumulated with rock-dust or a compaction by farm machines.

Effect of Specific Surface Area of Activated Carbon Fiber on Harmful Gas Adsorption and Electrochemical Responses (활성탄소섬유의 비표면적에 따른 유해가스 흡착 및 전기화학적 감응 특성)

  • Kang, Jin Kyun;Chung, Yong Sik;Bai, Byong Chol;Ryu, Ji Hyun
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.51-57
    • /
    • 2020
  • Recently, there has been growing interest in the study of removal of harmful and hazardous pollutants emitted by industrial activities. In this study, we have developed porous activated carbon fibers prepared by a water vapor activation method and analyzed the adsorptions of the harmful gases with electrochemical responses of activated carbon fibers. To control the uniformity of pore structures, active reaction areas, and active sites, the reaction conditions of activation temperatures were varied from 750 to 850 ℃ with the predetermined reaction time intervals (30 to 240 min). The SO2 and NO gas adsorptions of activated carbon fibers prepared by various reaction conditions were analyzed and monitored by electrochemical sensor responses. In particular, the activated carbon fibers prepared at the reaction temperature of 850 ℃ and time of 45 min showed the highest specific surface area (1,041.9 ㎡/g) and pore characteristics (0.42 ㎤/g), and excellent adsorption capabilities of SO2 (1.061 mg/g) and NO (1.210 mg/g) gases, respectively.

Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun;Lee, Woochang;Bae, Young-Min;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.

Thiadiazolopyrimidines as Acid Corrosion Inhibitors for Mild Steel

  • Chitra, S.;Parameswari, K.;Vidhya, M.;Kalishwari, M.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2011
  • The inhibitive action of thiadiazolopyrimidines on mild steel in 1 M $H_{2}SO_{4}$ has been studied using weight loss, gasometric studies and electrochemical polarization and AC impedance measurements. The effect of temperature on the corrosion behaviour of mild steel in 1 M $H_{2}SO_{4}$ with optimum concentration of inhibitors was studied in the temperature ranging from 313-333K The adsorption of the inhibitor on the surface of mild steel was found to be exothermic, spontaneous and followed the mechanism of physisorption. The adsorption of these compounds on mild steel surface was found to obey Langmuir adsorption isotherm. The protective film formed on the surface of mild steel by the adsorption of inhibitor in 1 M $H_{2}SO_{4}$ solution was confirmed by optical microscopic technique. Synergistic effect of halide ions on mild steel in 1 M $H_{2}SO_{4}$ was studied by weight loss technique.

Media Optimization for Laccase Production by Trichoderma harzianum ZF-2 Using Response Surface Methodology

  • Gao, Huiju;Chu, Xiang;Wang, Yanwen;Zhou, Fei;Zhao, Kai;Mu, Zhimei;Liu, Qingxin
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1757-1764
    • /
    • 2013
  • Trichoderma harzianum ZF-2 producing laccase was isolated from decaying samples from Shandong, China, and showed dye decolorization activities. The objective of this study was to optimize its culture conditions using a statistical analysis of its laccase production. The interactions between different fermentation parameters for laccase production were characterized using a Plackett-Burman design and the response surface methodology. The different media components were initially optimized using the conventional one-factor-at-a-time method and an orthogonal test design, and a Plackett-Burman experiment was then performed to evaluate the effects on laccase production. Wheat straw powder, soybean meal, and $CuSO_4$ were all found to have a significant influence on laccase production, and the optimal concentrations of these three factors were then sequentially investigated using the response surface methodology with a central composite design. The resulting optimal medium components for laccase production were determined as follows: wheat straw powder 7.63 g/l, soybean meal 23.07 g/l, $(NH_4)_2SO_4$ 1 g/l, $CuSO_4$ 0.51 g/l, Tween-20 1 g/l, $MgSO_4$ 1 g/l, and $KH_2PO_4$ 0.6 g/l. Using this optimized fermentation method, the yield of laccase was increased 59.68 times to 67.258 U/ml compared with the laccase production with an unoptimized medium. This is the first report on the statistical optimization of laccase production by Trichoderma harzianum ZF-2.

A Study on the Evaluation of Surface Dose Rate of New Disposal Containers Though the Activation Evaluation of Bio-Shield Concrete Waste From Kori Unit 1

  • Kang, Gi-Woong;Kim, Rin-Ah;Do, Ho-Seok;Kim, Tae-Man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • This study evaluates the radioactivity of concrete waste that occurs due to large amounts of decommissioned nuclear wastes and then determines the surface dose rate when the waste is packaged in a disposal container. The radiation assessment was conducted under the presumption that impurities included in the bio-shielded concrete contain the highest amount of radioactivity among all the concrete wastes. Neutron flux was applied using the simplified model approach in a sample containing the most Co and Eu impurities, and a maximum of 9.8×104 Bq·g-1 60Co and 2.63×105 Bq·g-1 152Eu was determined. Subsequently, the surface dose rate of the container was measured assuming that the bio-shield concrete waste would be packaged in a newly developed disposal container. Results showed that most of the concrete wastes with a depth of 20 cm or higher from the concrete surface was found to have less than 1.8 mSv·hr-1 in the surface dose of the new-type disposal container. Hence, when bio-shielded concrete wastes, having the highest radioactivity, is disposed in the new disposal container, it satisfies the limit of the surface dose rate (i.e., 2 mSv·hr-1) as per global standards.

Utilization of Cotton Stalks-Biomass Waste in the Production of Carbon Adsorbents by KOH Activation for Removal of Dye-Contaminated Water

  • Fathy, Nady A.;Girgis, Badie S.;Khalil, Lila B.;Farah, Joseph Y.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.224-234
    • /
    • 2010
  • Four activated carbons were produced by two-stage process as followings; semi-carbonization of indigenous biomass waste, i.e. cotton stalks, followed by chemical activation with KOH under various activation temperatures and chemical ratios of KOH to semi-carbonized cotton stalks (CCS). The surface area, total pore volume and average pore diameter were evaluated by $N_2$-adsorption at 77 K. The surface morphology and oxygen functional groups were determined by SEM and FTIR, respectively. Batch equilibrium and kinetic studies were carried out by using a basic dye, methylene blue as a probe molecule to evaluate the adsorption capacity and mechanism over the produced carbons. The obtained activated carbon (CCS-1K800) exhibited highly microporous structure with high surface area of 950 $m^2/g$, total pore volume of 0.423 $cm^3/g$ and average pore diameter of 17.8 ${\AA}$. The isotherm data fitted well to the Langmuir isotherm with monolayer adsorption capacity of 222 mg/g for CCS-1K800. The kinetic data obtained at different concentrations were analyzed using a pseudo-first-order, pseudo-second-order and intraparticle diffusion equations. The pseudo-second-order model fitted better for kinetic removal of MB dye. The results indicate that such laboratory carbons could be employed as low cost alternative to commercial carbons in wastewater treatment.

Optimization on Organoleptic Properties of Red Pepper Jam by Response Surface Methodology (반응표면분석에 의한 홍고추잼의 관능적 특성 최적화)

  • 이기동;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1269-1274
    • /
    • 1999
  • Four dimensional response surface methodology was applied to determine the optimum conditions on organoleptic properties to develop red pepper jam into Korean type jam. The organoleptic color of red pepper jam showed maximum score of 8.08 in 14.24g pectin, 256.2g sucrose and 8.31ml citric acid(50% citric acid solution). The organoleptic taste of red pepper jam showed maximum score of 6.77 in 14.23g pectin, 202.1g sucrose and 8.19ml citric acid. Optimum conditions on the organoleptic mouth feel of red pepper jam were 14.34g in pectin, 255.6g in sucrose and 8.39ml in 50% citric acid solution. Maximized overall palatability of red pepper jam was 7.25 in 14.15g pectin, 257.08g sucrose and 8.19ml of 50% citric acid solution. The optimum preparation condition ranges on organoleptic properties of red pepper jam were 14.0~15.5g pectin, 225.0~257.0g sucrose and 8.0~8.2ml of 50% citric acid solution.

  • PDF

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • v.4 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF