• Title/Summary/Keyword: $Fr{\acute{e}}chet$-derivative

Search Result 13, Processing Time 0.022 seconds

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

LOCAL CONVERGENCE RESULTS FOR NEWTON'S METHOD

  • Argyros, Ioannis K.;Hilout, Said
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • We present new results for the local convergence of Newton's method to a unique solution of an equation in a Banach space setting. Under a flexible gamma-type condition [12], [13], we extend the applicability of Newton's method by enlarging the radius and decreasing the ratio of convergence. The results can compare favorably to other ones using Newton-Kantorovich and Lipschitz conditions [3]-[7], [9]-[13]. Numerical examples are also provided.

CONVERGENCE THEOREMS FOR NEWTON'S AND MODIFIED NEWTON'S METHODS

  • Argyros, Ioannis K.
    • The Pure and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.405-416
    • /
    • 2009
  • In this study we are concerned with the problem of approximating a locally unique solution of an equation in a Banach space setting using Newton's and modified Newton's methods. We provide weaker convergence conditions for both methods than before [5]-[7]. Then, we combine Newton's with the modified Newton's method to approximate locally unique solutions of operator equations. Finer error estimates, a larger convergence domain, and a more precise information on the location of the solution are obtained under the same or weaker hypotheses than before [5]-[7]. The results obtained here improve our earlier ones reported in [4]. Numerical examples are also provided.

  • PDF