• 제목/요약/키워드: $Fr{\acute{e}}chet$ distance

검색결과 5건 처리시간 0.009초

이산 프레셰 거리 척도를 이용한 궤적 유사도 고속계산 휴리스틱 알고리즘 (Fast Heuristic Algorithm for Similarity of Trajectories Using Discrete Fréchet Distance Measure)

  • 박진관;김태용;박보국;조환규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.189-194
    • /
    • 2016
  • 궤적은 이동체가 움직인 경로이다. IT 기술의 성장은 GPS와 같은 위치 측정 장치를 통해 다양한 이동체의 궤적 데이터를 수집할 수 있게 하였다. 이동체의 궤적은 지리정보시스템(GIS)을 포함한 다양한 연구 분야에서 사용된다. 지리정보시스템 분야에서는 차량의 궤적 데이터를 이용한 전자 도로 지도생성 시도가 많이 이루어져왔다. 이 목표를 이루기 위해서는 같은 도로 상의 궤적들을 모으는 방법이 필요하다. 흔히 프레셰 거리($Fr{\acute{e}}chet$ distance)가 궤적 쌍의 거리를 측정하는데 사용된다. 하지만 프레셰 거리는 대량의 궤적들에 대해서는 계산 시간의 소모가 심하다. 본 논문에서는 궤적들의 인접성 여부를 이산프레셰 거리를 통해 빠르게 구분하는 휴리스틱 알고리즘을 제안한다. 이 알고리즘은 계산되는 거리의 정확도를 낮추는 대신 계산 속도를 높였다. 실험 결과, 제안 방법은 이산 프레셰 거리 대비 95%의 정확도와 최하 65%의 계산 감소율로 거리가 10m 이내인 궤적들을 구분할 수 있었다.

목표 형상을 추종하는 4D 프린팅 자동 설계에 관한 연구 (A Study on the Automatic Design of 4D Printing to Follow the Target Shape)

  • 함성일;이용구
    • 한국CDE학회논문집
    • /
    • 제21권3호
    • /
    • pp.306-312
    • /
    • 2016
  • In general, the shape of a 3D printed object is not to be changed after the generation. Most changes, for example, contraction of a molten polymer after cooling is thought to be undesirable. 4D printing however tries to make benefit of a shape change after the part is generated. The shape change is required to be controllable in response to an external stimuli. These artifacts from 4D printing are called kinetic components which are defined as structures formed by combining inert materials and smart materials that change under certain stimuli. We propose a design software that can systematically calculate inert links with smart joints to follow the shape of the target design.

이종의 도로망 데이터 셋에서 면 객체 매칭 기반 변화탐지 (Automatic Change Detection Based on Areal Feature Matching in Different Network Data-sets)

  • 김지영;허용;유기윤;김정옥
    • 한국측량학회지
    • /
    • 제31권6_1호
    • /
    • pp.483-491
    • /
    • 2013
  • 차량용 내비게이션의 빠른 확산과 스마트폰 등 개인 단말기의 측위 기술 발달로 사용자 중심위치기반서비스, 특히 보행자 내비게이션 서비스에 대한 관심이 증대되고 있다. 보행자 내비게이션 서비스를 위한 핵심정보인 수치지도는 대용량이고 짧은 갱신주기를 요구하는 경우가 많아 수치지도의 효율적인 갱신이 중요한 이슈가 된다. 본 연구에서는 구축시기가 상이한 이종의 도로망 데이터 셋에 형상유사도 기반 면 객체 매칭을 적용하여 변화 탐지하는 기법을 제안하였다. 변화탐지에 앞서 이종의 도로망 데이터 셋의 면 객체 매칭에서 탐지될 수 있는 갱신 유형을 정의하였다. 면 객체 매칭 기반 변화 탐지를 위하여 이종의 두 도로망 데이터 셋의 선형인 도로객체를 이들로 둘러싸인 면인 블록으로 변환하였다. 변환된 블록을 중첩하여 중첩된 블록 간의 형상유사도를 계산하고, 이 값이 0.6 이상인 것을 후보 블록 쌍으로 추출하였다. 객체 유형별로 이분 그래프 군집화와 오목다각형 특성을 적용하여 정의된 갱신유형별 블록 쌍을 탐지하고, 해당 블록 쌍을 구성하거나 내부에 있는 도로 세그먼트 간의 프레셰 거리를 계산하였다. 이때, 프레셰 거리가 50 이상인 도로명주소기본도 도로구간의 도로객체가 갱신 도로객체로 추출된다. 그 결과 0.965의 높은 탐색율을 보여 제안된 기법이 이종의 도로망 데이터 셋의 선형 객체의 변화탐지에 적용될 수 있음을 확인할 수 있었다.

GAN으로 합성한 음성의 충실도 향상 (Improving Fidelity of Synthesized Voices Generated by Using GANs)

  • 백문기;윤승원;이상백;이규철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권1호
    • /
    • pp.9-18
    • /
    • 2021
  • 생성적 적대 신경망(Generative Adversarial Networks, GANs)은 컴퓨터 비전 분야와 관련 분야에서 큰 인기를 얻었으나, 아직까지는 오디오 신호를 직접적으로 생성하는 GAN이 제시되지 못했다. 오디오 신호는 이미지와 다르게 이산 값으로 구성된 생플링된 신호이므로, 이미지 생성에 널리 사용되는 CNN 구조로 학습하기 어렵다. 이러한 제약을 해결하고자, 최근 GAN 연구자들은 오디오 신호의 시간-주파수 표현을 기존 이미지 생성 GAN에 적용하는 전략을 제안했다. 본 논문은 이 전략을 따르면서 GAN을 사용해 생성된 오디오 신호의 충실도를 높이기 위한 개선된 방법을 제안한다. 본 방법은 공개된 스피치 데이터세트를 사용해 검증했으며, 프레쳇 인셉션 거리(Fréchet Inception Distance, FID)를 사용해 평가했다. 기존의 최신(state-of-the-art) 방법은 11.973의 FID를, 본 연구에서 제안하는 방법은 10.504의 FID를 보였다(FID가 낮을수록 충실도는 높다).

대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링 (An Efficient Clustering Algorithm for Massive GPS Trajectory Data)

  • 김태용;박보국;박진관;조환규
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.40-46
    • /
    • 2016
  • 도로지도 생성은 인공위성 촬영이나 현장실사를 기반으로 한다. 그리하여 도로지도를 생성하고 수정하는데 많은 시간과 비용이 든다. 이러한 이유로 차량 GPS 데이터를 이용해 도로지도를 생성하는 연구가 활발히 진행되고 있다. 도로지도 생성 연구에서 가장 중요한 문제는 주도로와 같은 대표궤적을 추출하는 것이다. 대표궤적 추출을 수행할 때에는 시작과 끝이 비슷한 궤적데이터들의 집합을 전제로 하여 궤적을 추출한다. 따라서 대표궤적을 추출하기에 앞서 전처리 과정으로 궤적 클러스터링 작업이 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 하나의 영역을 일정한 격자로 분할하고, Sweep Line 알고리즘을 응용해 유사궤적들을 탐색한다. 마지막으로 프레쉐거리를 이용하여 궤적 간 유사도를 계산하였다. 실제로 서울의 강남구 지역에 있는 500대의 차량 GPS 궤적을 가지고 클러스터링 작업을 수행하였다. 또한, 실험을 통하여 격자분할 접근방식의 빠른 수행시간과 안정성을 보였다.