• Title/Summary/Keyword: $Fe_2SiO_4$

Search Result 563, Processing Time 0.022 seconds

Studies on agronomic characters of rice and soil textures in Akiochi paddy field (추락도(秋落稻)의 형태적(形態的) 특성(特性) 및 추락답토양(秋落畓土壤)에 관(關)한 연구(硏究))

  • Cho, Baik-Hyun;Lee, C.Y.;Lee, E.W.
    • Applied Biological Chemistry
    • /
    • v.6
    • /
    • pp.61-77
    • /
    • 1965
  • In this experiment, Akiochi was studied especially on plant growth on the degraded soils. Besides, such soils were carefully examined on its character and plant body was analysed to know the difference in various mineral contents. For this purpose, paddy cultivation was done with the variety Pal Dal at Suwon, Sosa and Pyungtak. Three plots were chosen at each location as the normal and 2 levels of akiochi, a-the stronger and b-the weaker. Harvests from these 9 plots were measured agronomically and also chemically analysised. As for soil, after an observation on vertical section of soil, samples from each layer were also studied both physically and chemically. The results are summarized as follows. 1. Outer changes in rice plant and changes in yield components. 1) Rice from Akiochi soil showed remarkably shortened culm length, head length, protrusoion length, blade length of boot leaf, and coleoptile length, compared with that from the normal paddy field. 2) There was a tendency for Akiochi rice to have more heads per plant. 3) Akiochi rice showed poorer intercalary growth of upper 3 internodes. The ratio of this upper internode length to total culm length was also smaller in this case. Consquently the ratio of lower internode length to total culm length became larger than that from normal peddy field. 4) Akiochi rice showed significantly fewer first spikelets and attached grains of head at main stem. 5) Maturing rate of both this main seem of whole plant body was remarkably lower than that of normal rice. 6) Akiochi rice showed lower head weight of main stem, total hulled rice weight, total grain yield, 1000-grain weight, straw weight and straw-hulled rice ratio. 2. Physical and chemical study on soil. 1) Akiochi soil showed thinner upper layer and total thickness of upper and lower parts was smaller than that of normal. 2) Akiochi soil of Suwon was mainly composed of sand, while that of Sosa and Pyungtak was composed of heavy clay. 3) Chemical analysis indicated that content of $SiO_2$ in upper layer is always lower than that of normal. But no other common tendencies were found. 4) This analysis further lillustrates lower content of Fe, & Mn at Suwon ; of Mn at Sosa and higher content of Fe at Sosa and organic matters at Pyungtak. 5) Some differences in the content of N in each plot could be marked though irregular. 3. Chemical Composition of plant body. 1) Chemical analysis on grain, boot leaf and straw did not suggest any remarkable differences between normal and Akiochi rice, except that the latter contains less Si in boot leaf and less Mn in straw. 2) Contents of each chemical element were measured in grain and straw to calculate the percentage of element content in grain to that of whole plant body including both grain and straw. Here, Akiochi rice always showed lower value in N, K and Mn. 4. Relationship between chemical composition of plant body and that of soil. Akiochi soil at Sosa marked lower content of Mn. This caused another lower content of this element in grain, boot leaf and straw. But except that, no remarkable relationship could be found in this study.

  • PDF

Behaviors of Arsenic in Paddy Soils and Effects of Absorbed Arsenic on Physiological and Ecological Characteristics of Rice Plant lll. Effect of Water Management on As Uptake and the Growth of Rice Plant at As Added Soil (토양중(土壤中) 비소(砒素)의 행동(行動)과 수도(水稻)의 비소흡수(砒素吸收)에 의(依)한 피해생리(被害生理) 생태(生態)에 관(關)한 연구(硏究);Ⅲ.물관리(管理)가 수도의 비소흡수(砒素吸收) 및 생육(生育)에 미치는 영향(影響))

  • Lee, Min-Hyo;Lim, Soo-Kill-H
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1987
  • A pot experiment was conducted to find out the effect of water management on the growth and uptake of arsenic and inorganic nutrients of rice plant at As added soil. The arsenic were added to soil at the levels of As 0, 10, 50, 100 and 150 ppm, respectively. Water management was done with two ways: intermittent irrigation from ten days after transplanting, and continuous submersion until harvest. Higher soil As levels increased As content in plant but reduced growth rate. Aresenic content in plant was considerably reduced with intermittent irrigation compared to continuous submersion. Rice growth showed also same trend. With increasing As levels in soil, N content in plant was increased but P, K, Ca, Mg, $SiO_2$, Fe and Mn content in plant were tend to be decreased. These inorganic nutrients in plant were also much absorbed in continuous submersion compared to intermittent irrigation. Soil pH was slightly increased with increasing As levels in soil while soil Eh has no relationship with soil As levels. On the other hand, soil pH was higher in the treatment of continuous submersion than that of intermittent irrigation but soil Eh showed reverse trend. With increasing As levels in soil, water soluble-As and Ca-As fractions in soil tend to be increased with continuous submersion, but these fractions has no tendency with intermittant irrigation.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF