• Title/Summary/Keyword: $Fe_2SiO_4$

Search Result 563, Processing Time 0.029 seconds

A Study o the Geological Occurrence, the Mineralogical and Physico-chemical Properties of the Sericite Ore from the Yangbuk Area, Kyungsangbuk-do (경북 양북지역산 견운모광석의 물성 및 부존산상)

  • 이동진;고상모
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.85-96
    • /
    • 1998
  • The sericite ore is formed by the hydrothermal alteration of rhyodacitic welded tuff. The alteration zone of the host rock can be classified into four types based on the mineral assemblages ; sericite, quartz-sericite, silicified and propylite zone. The sericite ore mainly occurs as vein types and fault clay along the fault plane in the quartz-sericite zone. Mineral components of the sericite ore are mainly sericite with minor diaspore, corundum and pyrite. The sericitic porcelaineous ore is mainly composed of quartz and sericite. Accessory minerals are muscovite, diaspore, sphene, corundum, pyrite, iron-oxides and etc. The chemical compositions of K2O, Al2O3, and ignition loss in the sericite ore increase largely than that of the host rock, while the compositions of SiO2, Na2O and Fe2O3 decrease. XRD patterns of the heat-treated sericite ores show the formation of mullite at $1,200^{\circ}C$. and the diaspore-bearing sericite ore forms mullite and corundum at $1,200^{\circ}C$. The differential thermal analysis of the sericite ores show small endothermic peak at 645~668$^{\circ}C$. and the diaspore-bearing sericite ore shows a strong endothermic peak at $517^{\circ}C$. It indicates that the decomposition of diaspore appear at lower temperature than that of sericite. The thermal expansivity of the sericite ores show the similar pattern. The sericite ores show the thermal expansivity of 3.3~4.7% at 900$^{\circ}C$ and 0.39~0.75% at 1,20$0^{\circ}C$, respectively. DTA-TG curves of the sericite ores show closely relations with the thermal expansivity.

  • PDF

Geologic Report on the Goobong Limestone Mine (구봉석회석광산의 지질조사보고(地質調査報告))

  • Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1970
  • The purpose of this report is to prepare a data for the economic evaluation on the Goobong Limestone Mine which is located at the south-eastern corner of the Yongchun Quadrangle scaled in 1:50,000. The accessibility from the mine to railroad was considered in two ways. One is to Dodam Station on Central Railway Line and the other is to reach Songjung-ni village which is near Sangyong Station on Hamback Railway Line. The distance of the former way is 26.7km and the later is 24.2km. Geologically the mine is situated near the base of the Greast Limestone Series which strikes generally $N25^{\circ}{\sim}30^{\circ}E$. The series comprises six different formations from older to younger; Pungchon Limestone Formation and Whajol Formation of Cambrian age, and Dongjum Quartzite Formation, Dumudong Formation, Maggol Limestone Formation and Goseong Formation of lower to middle Ordovician age. 82 samples; 48 from Pungchon Limestone Formation, 11 from Dumudong Formation, 15 from Maggol Limestone Formation and 8 from Goseong Formation, were taken from the series in the crossed direction to the general trend of the series as shown in geological map. They were chemically analyzed on the components of CaO, MgO, $SiO_2$, $R_2O_3(Al_2O_3+Fe_2O_3)$ and ignition loss as shown in table 2, table 3, table 4, and table 5. As seen from the tables, among the formations of the series, middle to upper parts of the Pungchon Limestone Formation and middle and upper parts of the Dumudong Formation have chemical composition as available source for the raw material of cement industry, not only that but also the part of the Pungchon Formation was highly evaluated as source for the flux of iron smelting and the raw material of carbide manufacturing because of its high purity of calcium carbonate.

  • PDF

Oxidation Properties of Cobalt Protective Coatings on STS 444 of Metallic Interconnects for Solid Oxide Fuel Cells (고체산화물 연료전지 금속연결재용 STS 444의 코발트 보호막 산화 특성)

  • Hong, Jong-Eun;Lim, Tak-Hyung;Lee, Seung-Bok;Yoo, Young-Sung;Song, Rak-Hyun;Shin, Dong-Ryul;Lee, Dok-Yol
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.455-463
    • /
    • 2009
  • 코발트 보호막 코팅이 적용된 페라이트계 스테인리스 스틸인 STS 430과 STS 444 소재에 대해 고체산화물 연료전지용 금속연결재로서의 고온 산화 특성에 대해 살펴보았다. 코발트 코팅층은 $800^{\circ}C$ 고온 산화 후 코발트 산화물 및 $Co_2CrO_4$, $CoCr_2O_4$, $CoCrFeO_4$ 등과 같은 코발트가 함유된 스피넬 상을 형성하였다. 또한 페라이트계 스테인리스 스틸과 코발트 코팅의 계면에서 크롬과 철이 함유된 치밀한 산화층을 형성하여 금속연결재 표면의 스케일 성장속도를 감소시키고 금속연결재 내에 함유된 크롬의 외부 확산을 효과적으로 억제하였다. 한편 STS 430은 고온 산화 후 표면에 형성된 스케일 하부에 $SiO_2$와 같은 내부 산화물이 형성된 반면 STS 444는 표면 스케일 이외에 다른 내부 산화물은 확인되지 않았으며 고온에서의 면저항 측정 결과, 코발트가 코팅된 STS 444의 전기 전도성이 STS 430 보다 우수한 것으로 나타났다.

The Electromagnetic and Thermal Properties of the Mn-Zn Ferrite for the Power Line Communication

  • Lee, Hae-Yon;Kim, Hyun-Sik;Huh, Jeoung-Sub;Oh, Young-Woo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.220-224
    • /
    • 2002
  • The electromagnetic properties and thermal behavior of Mn-Zn ferrite cores for the blocking filter of PLC application were investigated as the function of additives. The highest density and permeability were 4.98 g/㎤ and 8,221, respectively and were obtained to the specimen with composition of MnO 24 mol%, ZnO 25 mol% and Fe$_2$O$_3$51 mol%, added MoO$_3$ of 400 ppm, SiO$_2$ of 100 ppm, and CaO of 200 ppm. The uniform grains were organized, and the microstructures were compacted due to reduction of pores in the specimen. The permeability was increased up to 13,904 as the temperature of specimen increased to 110。C. However, it was decreased precipitously under 100 over 110。C. The exothermic behavior was observed in the frequency range from 1 kHz to 1 MHz, and the maximum temperature of specimen was 102。C at 1 MHz. In the consequence, the Mn-Zn ferrite core developed in this research will maintain the stable electromagnetic properties since the temperature of ferrite core rose to 93 。C in the range of 100 kHz to 450 kHz bandwidth qualified for PLC. The blocking filters were designed for single phase and three phases using the in-line and non-contact core. The best attenuation ratios of -46.46 dB and -73.9 dB were measured in the range of 100 kHz to 450 kHz bandwidth, respectively.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Effect of physicochemical properties and feed mix ratios on the carbothermic reductions of iron ore with coke

  • S.R.R. Munusamy;S. Manogaran;F. Abdullah;N.A.M. Ya'akob;K. Narayanan
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • This study aimed to investigate the effect of physicochemical properties and mix ratios of iron ore (oxide feed): coke (reductant) on the carbothermic reductions of iron ore. Coke size was fixed at ≤63 ㎛ while iron ore size varied between 150-63 ㎛ and ≤63 ㎛ respectively. Mix ratios were changed from 100:0 (reference) to 80:20 and 60:40 while the temperature, heating rate and soaking duration in muffle furnace were fixed at 1100 ℃, 10 ℃/min and 1 hour. Particle size analyzer, XRF, CHNS and XRD analyses were used for determination of raw feed characteristics. The occurrence of phase transformations from various forms of iron oxides to iron during the carbothermal reductions were identified through XRD profiles and supported with weight loss (%). XRF analysis proved that iron ore is of high grade with 93.4% of Fe2O3 content. Other oxides present in minor amounts are 2% Al2O3 and 1.8% SiO2 with negligible amounts of other compounds such as MnO, K2O and CuO. Composite pellet with finer size iron particles (≤63 ㎛) and higher carbon content of 60:40 exhibited 45.13% weight lost compared to 32.30% and 3.88% respectively for 80:20 and 100:0 ratios. It is evident that reduction reactions can only occur with the presence of coke, the carbon supply. The small weight loss of 3.88% at 100:0 ratio occurs due to the removal of moisture and volatiles and oxidations of iron ore. Higher carbon supply at 60:40 leads into better heat and mass transfer and diffusivity during carbothermic reductions. Overall, finer particle size and higher carbon supply improves reactivity and gas-solid interactions resulting in increased reductions and phase transformations.

Loess Dyeing of Soybean Fabrics (대두직물의 황토염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1004-1012
    • /
    • 2015
  • The purpose of this study is to investigate the loess dyeability of soybean fabric using loess as colorants. Recent days, various textile products such as inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved metabolism, anti-bacterial, deodorizing properties, and far infrared ray emissions. Soybean fabric was dyed with loess solution according to concentration of loess, dyeing temperature and dyeing time. To improve washing fastness, soybean fabric and dyed soybean fabric with loess were mordanted by mordanting agents such as sodium chloride(NaCl), Acetic acid(CH3COOH) and Aluminium Potassium Sulfate(AlK(SO4)2·12H2O). Dyeability and color characteristics of dyed soybean fabric were obtained by CCM observation. Particle size distribution of loess, the dyeability(K/S) of soybean fabric, morphology and washing durability of loess dyed soybean fabric were investigated. The results obtained were as follows; Mean average diameter of loess was 1.08µm. The main components of loess used in this study were silicon dioxide(SiO2), aluminium oxide(Al2O3), and iron oxide(Fe2O3). The content of these three component was above 75 weight %. The dyeability of soybean fabric was increased gradually with increasing concentration of loess. The optimum dyeing temperature and dyeing time were 90℃ and 60minutes expectively. The fastness to washing according to concentration of loess and mordanting method indicated good grade result as more than 4 degree in all conditions.

A Study on the Geological Occurrence, the Mineralogical and Physico-Chemical Properties of the Yucheon Sericite Ore in Chungha Area, Kyungsangbuk-do (청하지역 유천 견운모의 산상 및 물성)

  • 이동진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.114-125
    • /
    • 1997
  • The purpose of this study is to clarify the geological occurrence, mineralogical, physico-chemical and thermal properties of the sericite ore which located in Chungha area, Kyungsangbuk-do. The geology of this area are composed mainly of hornfels and some felsite porphyry. The sericitic ore is classified into sericite, sericite-quartz and quartz-sericite ore according to mineral assemblages. Mineral components in sericite ore are mainly sericite with minor quartz, apatite, sphene, zircon, ilmenite, bismuthinite, iron oxide and etc. Sericite-quartz ore are mainly composed of sericite and quartz. Accessary minerals are muscovite, epidote, zircon, sphene, iron oxide and etc. The chemical compositions of K2O, Al2O3, & Ignition loss in sericite and sericite-quartz ore increase than that of the host rock, while the composition of SiO2, Na2O & Fe2O3 decrease. Sericite and sericite-quartz ore are characterized by the specific gravity of 2.35 and 2.44, the pH of 4.36 cP and 2.36 cP respectively. The result of size analyses of sericite ore is 11.3% in grain volume concentration between 12.9 $\mu\textrm{m}$ and 11.1$\mu\textrm{m}$, and 32.3% between 9.6$\mu\textrm{m}$ and 12.9$\mu\textrm{m}$. The thermal expansivity of sericite and sericite-quartz ore show the similar pattern. The sericite ore shows the thermal expansivity of 0.31% at 50$0^{\circ}C$, 0.39~0.75% at 600~1,00$0^{\circ}C$ and 0.74% at 1,10$0^{\circ}C$. The sericite-quartz ore show the thermal expansivity of 0.29% at 50$0^{\circ}C$, 0.36~0.72% at 600~1,000% and 0.71% at 1,10$0^{\circ}C$.

  • PDF

Provenance Estimation on the Yeoncheon Samgeori Obsidian Artifacts (연천 삼거리 유적지 흑요석제 석기에 대한 산지 추정)

  • Yi, Seonbok;Jwa, Yong-Joo;Jin, Mi-Eun;Kil, Youngwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • We estimated the provenance of the obsidian artifacts from Samgeori site at Yeoncheon, one of the prehistoric sites in South Korea. Pyroxene microlites are of hedenbergite to augite compositions, and intergrown and/or overgrown with Fe-oxides showing poikilitic texture. Major oxides contents for the matrix of the obsidian artifacts exhibit a narrow compositional range, especially SiO2 contents being 73.0~75.5 wt.% of acidic rhyolitic composition. Also, rare earth element (REE) contents are relatively constant in the obsidian artifacts, and the chondrite-normalized REE patterns show a strong Eu negative anomaly. These mineralogical and geochemical features of the Samgeori obsidian artifacts were compared with those from both the Baekdusan obsidians and Japanese Kyushu obsidians which have been thought to be two major obsidian provenances around South Korea. It is suggested that the Samgeori obsidian artifacts were possibly originated from the Baekdusan obsidians.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.