• Title/Summary/Keyword: $Fe_2SiO_4$

Search Result 563, Processing Time 0.031 seconds

Barium Hexaferrite Thin Films Prepared by the Sol-Gel Method

  • An, Sung-Yong;Lee, Sang-Won;Shim, In-Bo;Yun, Sung-Roe;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.23-26
    • /
    • 2001
  • Nano-crystalline hexaferrite $BaFe_{12}O_{19}$(BaM) thin films have been prepared by the sol-gel method. A solution of Ba-nitrate and Fe-nitrates was dissolved in solvent with the stoichiometric ratio Ba/Fe=1/10. Films were spin-coated onto $SiO_2$Si substrates, dried and then heated in air at various temperatures. In films prepared at a drying temperature $T_d=250^{\circ}C$ and a crystallizing temperature 650${\circ}C$, single-phase BaM was obtained. High coercivities were obtained in these nano-crystalline thin films, 4~5.5 kOe for hexaferrite. Polycrystalline BaM/$SiO_2$/Si(100) thin films were characterized by Rutherford backscattering (RBS), thermogravimetry (TGA), differential thermal analysis (DTA), x-ray diffraction (XRD), and vibrating sample magnetometry (VSM), as well as Fourier transform infrared spectroscopy (FTIR). The perpendicular coercivity $H_{C\bot}$ and in-plane coercivity $H_{CII}$ after annealing at 650${\circ}C$ for 2 hours were 4766 Oe and 4480 Oe, respectively, at room temperature, under a maximum applied field of 10 kOe.

  • PDF

Effects of Nucleating Seeds on Coloring of Zn2SiO4 Crystal Glazes

  • Lee, Hyun-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.197-203
    • /
    • 2015
  • The colorization of $Zn_2SiO_4$ crystal glazes was investigated by adding nucleating seeds with various coloring agents. The addition of color fixing agents such as $Fe_2O_3$, $MnO_2$, and NiO with seeds caused changes in the colors of glazes. The crystallinity and crystal size were dependent on glaze composition and firing schedules. By controlling coloring agents and firing schedules, it was possible to create various colors and sizes of crystals in a zinc-based crystalline glaze.

Recovery of $\alpha$-iron from converter dust in a steelmaking factory (제철소 전노 dust로부터 철분강 회수에 관한 연구)

  • 김미성;김미성;오재현;김태동
    • Resources Recycling
    • /
    • v.2 no.2
    • /
    • pp.27-38
    • /
    • 1993
  • In this study, we investigated the grinding and sedimentation(elutriation) process of the dusts for the effective separation of high purity iron and iron oxides. For characterization of the dust, particle size distribution and chemical composition, were examined. The results obtained in this study may be summarized as follows : 1. The converter CF(clarifier) dust of the Pohang 1st, 2nd steel making factory and EC(Evaporation Cooler), EP(Eltrostatic precititator) dust of the Kwangyang 2nd steel making factory are composed $\alpha$-Fe(21~50%), FeO(wustite)$Fe_3$$O_4$(magnetite), $Fe_2$$O_3$, CaO, $Al_2$$O_3$, $SiO_2$, and etc. 2. Pure iron has ductile characteristic in nature, particle size of the pure iron increase by increasing the grinding time. On the other hand, it is conformed that bo고 particles of hematite and magnetite become less than 325 mesh after 10 minutes grinding. 3. By applying the elutriation technique for the EC dust of the Kwangyang 2nd steel making factory, the iron powder of high content more than 99.17% of pure Fe was recovered with 37.8% yield at grinding time for 40 minutes. 4. By applying the elutriation technique for the CF dust of the Pohang 2nd steel making factory, the iron powder of high content more than 98.38% of pure Fe was recovered with 44.42% yield at grinding time for 40 minutes. 5. When magnetic separation was performed using plastic bonding magnet of 70 gauss, more than 98% Fe grade of iron powder was recovered in the size range +65 -200 mesh but the recovery of it was low.

  • PDF

Gas Permeation of Y2O3-SiC Composite Membrane

  • Song, Daheoi;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.234-236
    • /
    • 2015
  • $Y_2O_3$-SiC composite membrane was dip-coated using $Y_2O_3$ sol solution; this membrane was compared with a non- coated one. Each membrane was characterized by XRD, FE-SEM and BET techniques. Hydrogen and CO permeation were tested with self-manufactured Sievert's type equipment. $Y_2O_3$ coating was enhanced for the selectivity of the membrane ($H_2$ versus CO). The hydrogen permeation was measured at 1 bar with increasing temperatures. In case of the coated membrane, hydrogen permeation was found to be $1.24{\times}10^{-7}mol/m^2sPa$ with perm-selectivity of 4.26 at 323 K.

Effect of Ba Stearate Addition on Magnetic Properties of Ba-system W-type Ferrite Magnets

  • Yamamoto, Hiroshi;Nishio, Hiroaki;Sawayama, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1165-1166
    • /
    • 2006
  • An experiment was carried out to investigate the effect of Ba Stearate as a reducing agent on the magnetic and physical properties of anisotropic $BaFe_2-W$ type ferrite magnets. It was found that the magnetic properties of $BaO{\cdot}8.5Fe_2O_3$ were improved by adding 0.3 wt% of Ba Stearate, 0.5 wt% of $SiO_2$, and 0.5 wt% of CaO together. The optimum conditions for making magnets were as follows; semisintering condition: $1350^{\circ}C{\times}4.0$ h in nitrogen gas atmosphere, drying condition: $180^{\circ}C{\times}2.0$ h in air, sintering condition: $1160^{\circ}C{\times}1.5$ h in nitrogen gas atmosphere. Magnetic and physical properties of a typical sample were $J_m$ = 0.46 T, $J_r$ = 0.43 T, $H_{cJ}$ = 182.3 kA/m, $H_{cB}$ = 177.2 kA/m, $(BH)_{max}$ = 33.8 kJ/$m^3$, $T_C$ = $495^{\circ}C$ and $K_A$ = $2.65{\times}10^5\;J/m^3$ and $H_A$ = 1332 kA/m.

  • PDF

Synthesis of Aniline from Nitrobenzene and Fe(CO)5 with PEG/γ-Al2O3 as Phase Transfer Catalyst (PEG/γ-Al2O3 상이동 촉매상에서 니트로벤젠과 Fe(CO)5로부터의 아닐린 합성)

  • Oh, So-Young;Lee, Hwa-Su;Park, Dae-Won;Park, Sang-Wook;Shin, Jung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.144-152
    • /
    • 1993
  • Immobilized polyethylene glycols onto metal oxides such as ${\gamma}-Al_2O_3$, ${\alpha}-Al_2O_3$, $SiO_2$ and $TiO_2$ were used as phase transfer catalysts for the room temperature synthesis of aniline from nitrobenzene and ironpentacarbonyl. The amount of attached PEG molecules increased with specific surface area of metal oxides. Among the immobilized catalysts tested PEG/${\gamma}-Al_2O_3$ showed the highest activity. The reaction rate increased with the chain length of PEG mole-cules and the aqueous NaOH concentration. Mechanistic study carried out using infrared spectrometer revealed that the role of PEG was to increase the formation of $HFe(CO)_4{^-}$ ion, which is known as active species, and its movement from aqueous to organic phase.

  • PDF

Magnetic Properties of Sn1-xFexO2 Thin Films and Powders Grown by Chemical Solution Method

  • Li, Yong-Hui;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.161-164
    • /
    • 2009
  • Iron-doped $Sn_{1-x}Fe_xO_2$ (x = 0.0, 0.05, 0.1, 0.2, 0.33) thin films on Si(100) substrates and powders were prepared by a chemical solution process. The x-ray diffraction (XRD) patterns of the $Sn_{1-x}Fe_xO_2$ thin films and powders showed a polycrystalline rutile tetragonal structure. Thermo gravimetric (TG) - differential thermal analysis (DTA) showed the final weight loss above $430{^{\circ}C}$ for all powder samples. According to XRD Rietveld refinement of the powders, the lattice parameters and unit cell volume decreased with increasing Fe content. The magnetic properties were characterized using a vibrating sample magnetometer (VSM) and M$\ddot{o}$ssbauer spectroscopy. The thin film samples with x = 0.1 and 0.2 showed paramagnetic properties but thin films with x = 0.33 exhibited ferromagnetic properties at room temperature. Mossbauer studies revealed the $Fe^{3+}$ valence state in the samples. The ferromagnetism in the samples can be interpreted in terms of the direct ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen deficiency, which can be explained using the F-center exchange model.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Glaze from Wood Ashes and their Color Characteristics (여러 가지 나무재를 이용한 도자기용 유약제조와 색상 특성)

  • 한영순;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.2
    • /
    • pp.158-164
    • /
    • 2004
  • This study is to analyze the characteristics of typical Korean wood ashes from twelve trees, oak tree needles and pine bark, which are common in the area, and to suggest their applications in ash glaze making. The chemical analysis of the ashes shows that the main component of wood ash is CaO while wood bark ash consists of $SiO_2$, and leaf ash consists of CaO and $SiO_2$. The results of the study are as follows: Ashes made from the wood of Acasia, Popular and Jujube contained relatively high amounts of Fe$_2$ $O_3$ and MgO compared to other tree ashes. The ashes had yellowish green color glaze. From the result of W analysis they presented the highest chroma. Therefore these ashes are good for making transparent glaze. From the result of W analysis Grapevine, pear and oak wood ashes containing the highest amounts of Fe$_2$ $O_3$, MgO, P$_2$O$\_$5/ and MnO presented yellowish green color glaze compared to other ashes are suitable for making opaque glazes because of their showing stable and opacity phenomena. Pine tree, Platanus and Zelkova wood ashes consist of high amounts of CaO and P$_2$O$\_$5/ compared to other tree ashes. So they showed the most vivid and bluish green color glaze among 12 ashes. Therefore, they would make a good celadon glaze. Birch, oak and chestnut tree ashes have high content or MnO which affects on glaze color with small amount. These ashes presented yellowish green color not as much strong as Acacia ash, Poplar ash, Jujube tree ash. These are good for Irabo glaze.

Immobilization of GH78 α-L-Rhamnosidase from Thermotoga petrophilea with High-Temperature-Resistant Magnetic Particles Fe3O4-SiO2-NH2-Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin

  • Xu, Jin;Shi, Xuejia;Zhang, Xiaomeng;Wang, Zhenzhong;Xiao, Wei;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.419-428
    • /
    • 2021
  • To efficiently recycle GH78 thermostable rhamnosidase (TpeRha) and easily separate it from the reaction mixture and furtherly improve the enzyme properties, the magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8 (FSNcZ8) was prepared by modifying Fe3O4-NH2 with tetraethyl silicate (TEOS), microcrystalline cellulose and zinc nitrate hexahydrate. FSNcZ8 displayed better magnetic stability and higher-temperature stability than unmodified Fe3O4-NH2 (FN), and it was used to adsorb and immobilize TpeRha from Thermotoga petrophilea 13995. As for properties, FSNcZ8-TpeRha showed optimal reaction temperature and pH of 90℃ and 5.0, while its highest activity approached 714 U/g. In addition, FSNcZ8-TpeRha had better higher-temperature stability than FN. After incubation at 80℃ for 3 h, the residual enzyme activities of FSNcZ8-TpeRha, FN-TpeRha and free enzyme were 93.5%, 63.32%, and 62.77%, respectively. The organic solvent tolerance and the monosaccharides tolerance of FSNcZ8-TpeRha, compared with free TpeRha, were greatly improved. Using naringin (1 mmol/l) as the substrate, the optimal conversion conditions were as follows: FSNcZ8-TpeRha concentration was 6 U/ml; induction temperature was 80℃; the pH was 5.5; induction time was 30 min, and the yield of products was the same as free enzyme. After repeating the reaction 10 times, the conversion of naringin remained above 80%, showing great improvement of the catalytic efficiency and repeated utilization of the immobilized α-L-rhamnosidase.