• Title/Summary/Keyword: $Fe(CO)_{5}$

Search Result 1,429, Processing Time 0.025 seconds

Magnetic Properties of Nylon 6 based Nd-Fe-Co-Zr-B Pellets for Injection Molding (사출성형용 Nylon 6계 Nd-Fe-Co-Zr-B 펠렛의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1993
  • Nylon 6 based magnetic pellets for injection molding were produced using plasma arc melt-spun $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ powders. Two sorts of bonded magnets made of two different sizes of particles ($38~75\;\mu\textrm{m}$ and $75~150\;\mu\textrm{m}$) were prepared to determine critical volume fraction of magnet powders, and the magnetic prop erties of the magnets were discussed as a function of density. For the nylon fi based Nd-Fe-Co-Zr-B pellets made of $38~75\;\mu\textrm{m}$ particles, the critical volume fraction of powders 0.7 was obtained with the pellet density which is 90% of theoretical density while the magnets of $75~150\;\mu\textrm{m}$ showed the density of 87% of the theoretical value with the same volume fraction. The nylon (i magnets with the addition of 0.5 wt. % silicon oil only exhibited the best magnetic properties to have $_{i}H_{c}=8.8\;kOe,\;B_{r}=5.1\;kG$ and $(BH)_{max}=5.2\;MGOe$ which are of world class. An empirical relationship in predicting the magnet density with a known fraction ($V_s$) of loading powders was obtained such as ${\rho}(g/cm^{3})=1.1+K.V_{s}$ where the K ranges over 5.3~5.6 be ing dependent upon the particle size loaded.

  • PDF

Effects of Ball-Milling Time on Formation and Magnetic Properties of Ba-Ferrite (Ba-Ferrite의 생성 및 자기적 성질에 미치는 분쇄시간의 영향)

  • Hyo Duk Nam;Sang Hee Cho
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.224-232
    • /
    • 1983
  • The effects of ball-milling time on solid state reactions in the system $BaCO_3-Fe_2O_3$ and the magnetic properties of Ba-ferrite 4(BaFe_{12}O_{19})$ have been studied. $BaCO_3-Fe_2O_3 $mixtures were prepared by ball-milling for varying lengths of time; 5, 15, 30, 80 and 200 hours. Techniques employed were thermogravimetry, X-ray diffraction analysis, scanning electron microscopy and B-H curve tracer. It is shown that the aggregation states and superparamagnetic size fractions obtained by increasing ball-milling time have remarkable effects on solid state reactions and magnetic properties of Ba-ferrite.

  • PDF

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Effect of Deposition Rate and Annealing Temperature on Magnetoresistance in Fe$Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$Multilayers (다층박막 $Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$의 증착률 및 열처리가 자기저항에 미치는 효과)

  • 김미양;최수정;최규리;송은영;오미영;이장로;이상석;황도근;박창만
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.282-287
    • /
    • 1998
  • Dependence of magnetoresistance on base pressure and deposition rates of each Fe, Co, Cu layers in the $Fe(50{\AA}/[Co(17{\AA})/Cu(24{\AA})]_20$ multilayer thin films, prepared by dc magnetron sputtering on Corning glass, were investigated. AFM analysis, X-ray diffraction analysis, vibrating sample magnetometer analysis, and magnetoresustance measurement (4-probe method) were performed. The multilayer films deposited under low base pressure increases magnetoresistance ratio by preventing oxidation. Annealing for the samples at a moderate temperature allowed larger textured grain with no loss in the periodicity. Magnetoresistance ratio of the annealed multilayers was increased due to the increase antiferromagnetically coupled fraction of the film after annealing. Optimization of deposition rate was greater than 1 $\AA$/s for Fe, and 2.8 $\AA$/s for Cu. Deposition rate of Co showed a tendency of increasing of magnetoresistance ratio due to the formation of flat magnetic layer in case of high deposition rate of Co.

  • PDF

$NiFe/Co/Al_2O_3/Co/IrMn$ 접합의 터널링 자기저항효과

  • 홍성민;이한춘;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.291-295
    • /
    • 1999
  • $NiFe/Co/Al_2O_3/Co/IrMn$ tunneling junctions were grown on (100)Si wafer and their spin-valve tunneling magnetoresistance (TMR) was studied. The tunneling junctions were grown by using a 5-gun RF/DC magnetron sputter. $Al_2O_3$ barrier layer was formed by exposing Al layer to oxygen atmosphere at 6$0^{\circ}C$ for 72 hours. Strong exchange coupling interaction is observed between the ferromagnetic Co and the antiferromagnetic IrMn of Co/IrMn bilayer when IrMn is 100$\AA$ thick. $NiFe(183\;{\AA})/Co(17\;{\AA})/Al_2O_3(16\;{\AA})/Co(100\;{\AA})/IrMn(100\;{\AA})$ tunneling junction shows best TMR ratio of about 10% in the applied magnetic field range of $\pm$20 Oe. The TMR ratio is improved about 23% and electrical resistance is decreased about 34% when annealed at 200 $^{\circ}C$ for 1 hour in magnetic field of 330 Oe, parallel to the bottom electrode. With increasing the active area of junction the TMR ratio increases while electrical resistance decreases.

  • PDF

Effects of Cu and K Addition on Catalytic Activity for Fe-based Fischer-Tropsch Reaction (Fe계 Fischer-Tropsch 반응에서 촉매활성에 대한 Cu와 K의 첨가 효과)

  • Lee, Chan Yong;Kim, Eui Yong
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Effects of the Cu and K addition and the reduction condition of Fe-based catalysts for Fischer-Tropsch reaction are studied in a continuous flow reactor in this research. The catalysts for the reaction were prepared by homogeneous precipitation followed by incipient wetness impregnation. Physicochemical properties of the $Al_2O_3$ supported Fe-based catalysts are characterized by various methods including X-ray diffraction (XRD), temperature programmed reduction (TPR), and scanning electron microscopy (SEM). Catalytic activities and stabilities of the Fe/Cu/K catalyst are investigated in time-on-stream for an extended reaction time over 216 h. It is found that a reduction of the catalysts using a mixture of CO and $H_2$ can promote their catalytic activities, attributed to the iron carbides formed on the catalysts surface by X-ray diffraction analysis. The addition of Cu induces a fast stabilization of the reaction reducing the time to reach at the steady state by enhancement of catalytic reduction. The addition of K to the catalysts increases the CO conversion, while the physical stability of catalyst decreases with potassium loading up to 5%. The Fe/Cu (5%)/K (1%) catalyst shows an enhanced long term stability for the Fischer-Tropsch reaction under the practical reaction condition, displaying about 15% decrease in the CO conversion after 120 h of the operation.

Electrocatalytic properties of Nd1.5Ba1.5CoFeMnOx for water splitting (수전해용 Nd1.5Ba1.5CoFeMnOx 전기촉매 특성 분석)

  • Lee, Ho Jun;Cho, Kyungwon;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.17-20
    • /
    • 2020
  • Developing effective and earth-abundant electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is critical for the commercialization of a water splitting system. In particular, the overpotential of the OER is relatively higher than the HER, and thus, it is considered that one of the important methods to enhance the performance of the electrocatalyst is to reduce the overpotential of the OER. In this work, we present a simple synthetic route for triple perovskite Nd1.5Ba1.5CoFeMnOx with high performance OER and HER activity. This triple perovskite structure which shows high crystallinity through combustion method shows superior bifunctional catalytic performance in alkaline media. We believe that the prepared triple provskite with high performance OER and HER activity can give further feasibility for the commercialization of a water splitting system.

Soft Magnetic Properties of Ring-Shaped Fe-Co-B-Si-Nb Bulk Metallic Glasses

  • Ishikawa, Takayuki;Tsubota, Takahiro;Bitoh, Teruo
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.431-434
    • /
    • 2011
  • The reduction of the Nb content in the $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$ bulk metallic glass (BMG) has been studied. The glass-forming ability (GFA) is reduced by decreasing the Nb content, but it can be enhanced by replacing partially Fe by Co. Furthermore, the saturation magnetization of the $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG is 1.35 T, being with 13% larger than that of the base alloy $(Fe_{0.75}B_{0.20}Si_{0.05})_{96}Nb_4$. $(Fe_{0.8}Co_{0.2})_{76}B_{18}Si_3Nb_3$ BMG exhibits slightly larger $B_{800}$ (the magnetic flux density at 800 A/m) and smaller core losses (20%-30%) compared with the commercial Fe-6.5 mass% Si steel.

Long-Term Stability for Co-Electrolysis of CO2/Steam Assisted by Catalyst-Infiltrated Solid Oxide Cells

  • Jeong, Hyeon-Ye;Yoon, Kyung Joong;Lee, Jong-Ho;Chung, Yong-Chae;Hong, Jongsup
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • This study investigated the long-term durability of catalyst(Pd or Fe)-infiltrated solid oxide cells for $CO_2$/steam co-electrolysis. Fuel-electrode supported solid oxide cells with dimensions of $5{\times}5cm^2$ were fabricated, and palladium or iron was subsequently introduced via wet infiltration (as a form of PdO or FeO solution). The metallic catalysts were employed in the fuel-electrode to promote $CO_2$ reduction via reverse water gas shift reactions. The metal-precursor particles were well-dispersed on the fuel-electrode substrate, which formed a bimetallic alloy with Ni embedded on the substrate during high-temperature reduction processes. These planar cells were tested using a mixture of $H_2O$ and $CO_2$ to measure the electrochemical and gas-production stabilities during 350 h of co-electrolysis operations. The results confirmed that compared to the Fe-infiltrated cell, the Pd-infiltrated cell had higher stabilities for both electrochemical reactions and gas-production given its resistance to carbon deposition.

Formation and Color of the Spinel Solid Solution in CoO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$ System (CoO-ZnO-$Fe_2O_3$-$TiO_2$-$SnO_2$계 Spinel 고용체의 생성과 발색에 관한 연구)

  • 이응상;이진성
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.11
    • /
    • pp.897-907
    • /
    • 1991
  • This study was conducted to research the formation and the color development of CoO-ZnO-Fe2O3-TiO2-SnO2 system for the purpose of synthesizing the spinel pigments which are stable at high temperature. After preparing CoO-ZnO-Fe2O3, in which CoO causes the color, as a basic composition, $\chi$CoO.(1-$\chi$)ZnO.Fe2O3 system, $\chi$CoO.(1-$\chi$)ZnO.TiO2 system and $\chi$CoO.(1-$\chi$)ZnO.SnO2 system were prepared with $\chi$=0, 0.2, 0.5, 0.7, 1.0 mole ratio respectively. The manufacturing was carried out at 128$0^{\circ}C$ for 90 minutes. These specimens were analyzed by the reflectance measurement and the X-ray diffraction analysis and the results were summarized as follows: 1. All of the specimens formed the spinel structure and were colored with stable yellow or blue. 2. As the content of CoO and Fe2O3 in the specimens being increased, the reflectance of each specimen was measured becoming lower and the colors were changed from yellow to greyish blue and from blue to dark blue. 3. As the substituting amount of Co2+ ion for Zn2+ ion in $\chi$CoO-ZnO-TiO2-SnO2 system being increased, the colors were changed from blue to greyish blue. The colors were changed from yellow to grayish green owing to the tetrahedral Co2+ ions being increased, the octahedral Co2+ ions being decreased with increasing the amount of Sn4+ ions. 4. CoO-ZnO-Fe2O3-TiO2-SnO2 system, in which Zn2+ was substituted with Co2+ and Fe3+ was substituted with Ti4+ and Sn4+, easily formed the spinel structure without regard to the amount of substitution or the ion owing to the selectivity of the coordination number: 4 of Zn2+, 4 of Co2+, 6 of Fe3+ or 6 of Ti4+ and Sn4+.

  • PDF