• Title/Summary/Keyword: $Eu_2Ga_2S_5$

Search Result 14, Processing Time 0.029 seconds

Photoluminescent Properties of EuGa2S4 and Eu2Ga2S5 Phosphors (EuGa2S4와 Eu2Ga2S5 형광체의 발광 특성)

  • Young-Sik Cho;Min-Kyeong Jang;Young-Duk Huh
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.236-240
    • /
    • 2023
  • Non-concentration quenching EuGa2S4 and Eu2Ga2S5 phosphors, in which the concentration of Eu2+ activator ion is 100%, were synthesized by a solid state reaction at temperature range from 800 to 1050 ℃. The wavelength of maximum intensity (λmax) of EuGa2S4 and Eu2Ga2S5 phosphors are 546 and 581 nm, respectively. An examination of the X-ray diffraction patterns and photoluminescent properties of EuGa2S4 and Eu2Ga2S5 phosphors revealed that EuGa2S4 and Eu2Ga2S5 phosphors were formed at lower temperature range (800~900 ℃) and higher temperature range (1000~1050 ℃), respectively.

Synthesis and Luminescence Characteristics of SrGa2S4:Eu Green Phosphor for Light Emitting Diodes by Solid-State Method (고상법을 이용한 LED용 SrGa2S4:Eu 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.371-378
    • /
    • 2004
  • The $SrGa_2S_4:Eu^{2+}$ green emitting phosphor has been studied as a luminous device for CRT (Cathode Ray Tube) or FED (Field Emission Display) and EL (Electroluminescence). This phosphor, also, is under noticed for LED (Lighting Emitting Diode) phosphor, which makes use of excitation characteristics of long wavelength region. The $SrGa_2S_4:Eu^{2+}$ phosphor was prepared generally conventional synthesis method using flux. However, this method needs high heat-treated temperature, long reaction time, complex process and harmful $H_2S$or $CS_2$ gas. In this works, therefore, we have synthesized $SrGa_2S_4:Eu^{2+}$ using SrS, $Ga_2S_3$, and EuS as starting materials, and the mixture gas of 5% H2/95% N2 was used to avoid the $H_2S$or $CS_2$. We investigated the luminescence characteristic of $SrGa_2S_4:Eu^{2+}$ phosphor prepared in various synthesis conditions, performed post-treatment and sieving process for application to LED.

Synthesis and Luminescent Characteristics of $BaGa_{2}S_{4}:Eu^{2+}$ Phosphor by Solid-state Method

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Journal of Information Display
    • /
    • v.7 no.4
    • /
    • pp.13-16
    • /
    • 2006
  • II-$III_{2}-(S,Se)_{4}$ structured of phosphor have been used at various fields because they have high luminescent efficiency and broad emission band. Among these phosphors, europium doped $BaGa_{2}S_{4}$ was prepared by solid-state method. We investigated the possibility of applying [ ] due to emissive property of UV region. Also, general sulfide phosphors were synthesized by using injurious $H_{2}S$ $CS_{2}$ gas. However, this study prepared $BaGa_{2}S_{4}:Eu^{2+}$ phosphor is addition to excess sulfur under 5% $H_{2}$/95% $N_{2}$ reduction atmosphere. So, this process could involved large scale synthesis because of non-harmfulness and simple process. The photo-luminescence efficiency of the prepared $BaGa_{2}S_{4}:Eu^{2+}$ phosphor increased by 20% compared with commercial $BaGa_{2}S_{4}:Eu^{2+}$ phosphor. From this, we could conclude that the prepared $BaGa_{2}S_{4}:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Synthesis and Luminescent Characteristics of Sr2Ga2S5:Eu2+ Yellow Phosphor for LEDs (LED용 Sr2Ga2S5:Eu2+ 황색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myeong;Park, Jeong-Gyu;Kim, Gyeong-Nam;Lee, Seung-Jae;Kim, Chang-Hae;Jang, Ho-Gyeom
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.237-242
    • /
    • 2006
  • Nowadays, LEDs has been applied to the luminescent devices of various fields because of the invention of high efficient blue chip. Recently, especially, the white LEDs composed of InGaN blue chips and a yellow phosphor (YAG:Ce3+) have been investigated extensively. With the exception of YAG:Ce3+ phosphor, however, there are no reports on yellow phosphor that has significant emission in the 450~470 nm excitation range and this LED system is the rather low color rendering index due to their using two wavelength. Hence, we have attempted to synthesize thiogallate phosphors that efficiently under the long wavelength excitation range in the present case. Among those phosphors, we have synthesized Sr2Ga2S5:Eu2+ phosphor by change the host material of SrGa2S4:Eu2+ which is well known phosphor and we investigated the luminescent properties. In order to obtain the harmlessness and simplification of the synthesis process, sulfide materials and mixture gas of 5 % H2/95 % N2 were used instead of the CS2 or H2S gas. The prepared phosphor shows the yellow color peaking at the 550 nm wavelength and it possible to emit efficiently under the broad excitation band in the range of 300~500 nm. And this phosphor shows high luminescent intensity more than 110 % in comparison with commercial YAG:Ce3+ phosphor and it can be applied for UV LED due to excitation property in UV region.

Cathodoluminescence and Longevity Properties of Potential Sr1-xMxGa2S4:Eu (M = Ba or Ca) Green Phosphors for Field Emission Displays

  • Ko, Ki-Young;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.822-826
    • /
    • 2008
  • We report the cathodoluminescence and aging properties of a series of green phosphors of formula $Sr_{1-x}M_xGa_2S_4$:Eu (x = 0.0-1.0, M = Ba or Ca) that have potential applications in field emission displays (FEDs). The series of phosphors was synthesized via NaBr-aided solid-state reactions in a flowing $H_2S$ stream. A low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu maintains the orthorhombic phase of pure $SrGa_2S_4$:Eu phosphors. Further, a low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu provides various green colors and sufficient brightness for FED applications. Substitution of Ba or Ca for Sr in $SrGa_2S_4$:Eu also improved the stability of the phosphor when it was operated under electron-beam irradiation of 5 kV.

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode (LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성)

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.761-765
    • /
    • 2006
  • [ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

Synthesis and Luminescent Characteristics of $BaGa_2S_4:Eu^{2+}$ Phosphor by Solid-state Method

  • Kim, Jae-Myung;Park, Joung-Kyu;Kim, Kyung-Nam;Lee, Seung-Jae;Kim, Chang-Hae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1096-1099
    • /
    • 2006
  • $II-III_2-(S,Se)_4$ structured of phosphor have been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, europium doped $BaGa_2S_4$ was prepared by solid-state method and we try to look into an application possibility due to an emissive property of UV region. Also, general sulfide phosphors were synthesized by using injurious $H_2S\;CS_2$ gas. However, this study prepared $BaGa_2S_4:Eu^{2+}$ phosphor is addition to excess sulfur under 5% $H_2/95%\;N_2$ reduction atmosphere. So, this process could large scale synthesis because of non-harmfulness and simple process. The photo-luminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could apply to green phosphor for white LED of three wavelengths.

  • PDF

Highly Luminescent (Zn0.6Sr0.3Mg0.1)2Ga2S5:Eu2+ Green Phosphors for a White Light-Emitting Diode

  • Jeong, Yong-Kwang;Cho, Dong-Hee;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2523-2528
    • /
    • 2012
  • Green phosphors $(Zn_{1-a-b}M_aM^{\prime}_b)_xGa_yS_{x+3y/2}:Eu^{2+}$ (M, M' = alkali earth ions) with x = 2 and y = 2-5 were prepared, starting from ZnO, MgO, $SrCO_3$, $Ga_2O_3$, $Eu_2O_3$, and S with a flux $NH_4F$ using a conventional solidstate reaction. A phosphor with the composition of $(Zn_{0.6}Sr_{0.3}Mg_{0.1})_2Ga_2S_5:Eu^{2+}$ produced the strongest luminescence at a 460-nm excitation. The observed XRD patterns indicated that the optimized phosphor consisted of two components: zinc thiogallate and zinc sulfide. The characteristic green luminescence of the $ZnS:Eu^{2+}$ component on excitation at 460 nm was attributed to the donor-acceptor ($D_{ZnGa_2S_4}-A_{ZnS}$) recombination in the hybrid boundary. The optimized green phosphor converted 17.9% of the absorbed blue light into luminescence. For the fabrication of light-emitting diode (LED), the optimized phosphor was coated with MgO using magnesium nitrate to overcome their weakness against moisture. The MgO-coated green phosphor was fabricated with a blue GaN LED, and the chromaticity index of the phosphor-cast LED (pc-LED) was investigated as a function of the wt % of the optimized phosphor. White LEDs were fabricated by pasting the optimized green (G) and the red (R) phosphors, and the commercial yellow (Y) phosphor on the blue chips. The three-band pc-WLED resulted in improved color rendering index (CRI) and corrected color temperature (CCT), compared with those of the two-band pc-WLED.

Growth and magnetic properties of Tb, Eu, EuTb-substituted garnet single crystal films (Tb, Eu, EuTb가 치환된 가네트 단결정 막의 성장과 자기적 특성)

  • Kim G. Y;Yoon S. G.;Chung I. S;Park S. B;Yoon D. H
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.193-198
    • /
    • 2004
  • Using the $PbO-B_2O_3-Bi_2O_3$ flux system, $(TbBi)_3(FeAIGa)_5O_{12}(TbIG)$, $(EuBi)_3(FeAIGa)_5O_{12}(EuIG)$ and $(EuTbBi)_3(FeAIGa)_5O_{12}(EuTbIG)$ films were grown on $(GdCa)_3(GaMgZr)_5O_{12}(SGGG)$ substrates by the liquid phase epitaxy (LPE). The saturation magnetization of the grown TbIG, EuIG and EuTbIG films was about 150, 950 and 125 Oe, respectively. The TbIG films resulted in the single magnetic domain while the EuIG and EuTbIG films were observed to be the multi magnetic domains by magnetic force microscope (MFM).

Photoluminescence properties of $CaS_{1-x}Se_x:Eu$ phosphors ($CaS_{1-x}Se_x:Eu$ 형광체의 발광 특성)

  • Ryu, Eun-Kyoung;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.204-209
    • /
    • 2007
  • We synthesized a series of $CaS_{1-x}Se_x:Eu$ red-emitting phosphors for application in phosphor-converted three-band white light emitting diode(LED). The photoluminescence and structural properties of $CaS_{1-x}Se_x:Eu$ were examined. The $CaS_{1-x}Se_x:Eu$ phosphors have a strong absorption at 455 nm, which is the emission wavelength of a blue LED. CaS:Eu has a red omission peak at 651 nm due to the $4f^65d^1(T_{2g}){\rightarrow}4f^7(^8S_{7/2})$ transition of the $Eu^{2+}$. The emission peak of $CaS_{1-x}Se_x:Eu$ is shifted from 651 to 598 nm with increasing Se content. $CaS_{1-x}Se_x:Eu$ can be used as wavelength-tunable red-emitting phosphors pumped by a blue LED. We also fabricated a three-band white LED by doping $SrGa_2S_4:Eu$ and $CaS_{0.50}Se_{0.50}:Eu$ phosphors onto a blue LED chip.