• 제목/요약/키워드: $Erd{\ddot{o}}s$-Ko-Rado

검색결과 3건 처리시간 0.013초

ON DIVERSITY OF CERTAIN t-INTERSECTING FAMILIES

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.815-829
    • /
    • 2020
  • Let [n] = {1, 2, …, n} and 2[n] be the set of all subsets of [n]. For a family 𝓕 ⊆ 2[n], its diversity, denoted by div(𝓕), is defined to be $$div(\mathcal{F})=\min_{x{\in}[n]}\{{\mid}{\mathcal{F}}(\bar{x}){\mid}\}$$, where ${\mathcal{F}}(\bar{x})=\{F{\in}{\mathcal{F}}:x{\not\in}F\}$. Basically, div(𝓕) measures how far 𝓕 is from a trivial intersecting family, which is called a star. In this paper, we consider a generalization of diversity for t-intersecting family.

AN ERDŐS-KO-RADO THEOREM FOR MINIMAL COVERS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제54권3호
    • /
    • pp.875-894
    • /
    • 2017
  • Let $[n]=\{1,2,{\ldots},n\}$. A set ${\mathbf{A}}=\{A_1,A_2,{\ldots},A_l\}$ is a minimal cover of [n] if ${\cup}_{1{\leq}i{\leq}l}A_i=[n]$ and $$\bigcup_{{1{\leq}i{\leq}l,}\\{i{\neq}j_0}}A_i{\neq}[n]\text{ for all }j_0{\in}[l]$$. Let ${\mathcal{C}}(n)$ denote the collection of all minimal covers of [n], and write $C_n={\mid}{\mathcal{C}}(n){\mid}$. Let ${\mathbf{A}}{\in}{\mathcal{C}}(n)$. An element $u{\in}[n]$ is critical in ${\mathbf{A}}$ if it appears exactly once in ${\mathbf{A}}$. Two minimal covers ${\mathbf{A}},{\mathbf{B}}{\in}{\mathcal{C}}(n)$ are said to be restricted t-intersecting if they share at least t sets each containing an element which is critical in both ${\mathbf{A}}$ and ${\mathbf{B}}$. A family ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is said to be restricted t-intersecting if every pair of distinct elements in ${\mathcal{A}}$ are restricted t-intersecting. In this paper, we prove that there exists a constant $n_0=n_0(t)$ depending on t, such that for all $n{\geq}n_0$, if ${\mathcal{A}}{\subseteq}{\mathcal{C}}(n)$ is restricted t-intersecting, then ${\mid}{\mathcal{A}}{\mid}{\leq}{\mathcal{C}}_{n-t}$. Moreover, the bound is attained if and only if ${\mathcal{A}}$ is isomorphic to the family ${\mathcal{D}}_0(t)$ consisting of all minimal covers which contain the singleton parts $\{1\},{\ldots},\{t\}$. A similar result also holds for restricted r-cross intersecting families of minimal covers.

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.1007-1025
    • /
    • 2015
  • Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.