• Title/Summary/Keyword: $E_{v2}$

Search Result 5,183, Processing Time 0.032 seconds

A Study on the Optical Properties of Lithium Injection in V$_2$O$_{5}$ Electrochromic Thin Films (리튬이 주입된 전기변색 V$_2$O$_{5}$ 박막의 광 특성에 관한 연구)

  • Ha, Seung-Ho;Cho, Bong-Hee;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.802-807
    • /
    • 1995
  • The electrochromic properties of vacuum deposited V$_2$O$_{5}$ thin films as a function of crystallinity and film thickness have been systematically investigated. The as-deposited films have slightly yellow appearance. V$_2$O$_{5}$ films deposited at higher substrate temperature(>14$0^{\circ}C$) are found to be crystalline while those deposited at low substrate temperature are amorphous. The optical modulation on lithium ion injection indicates that V$_2$O$_{5}$ films exhibit anodic coloration in the 300~500 nm wavelength range and cathodic coloration in the 500~1100nm wavelength range independent of crystallinity and film thickness. The optical band gap energy of crystalline and amorphous Li$_{x}$ VV$_2$O$_{5}$ films shifts to higher energies by 0.17 eV and 0.75 eV, respectively, with increasing lithium ion injection up to x=0.6. The coloration efficiency of amorphous Li$_{x}$ V$_2$O$_{5}$ exhibits very little dependence on film thickness and lithium ion injection amounts in the near-infrared while it increases significantly with increasing film thickness and decreasing lithium ion injection amounts in the blue and near-UV due to the shift in absorption edge below around 500nm. However, the coloration efficiency of crystalline Li$_{x}$ V$_2$O$_{5}$is relatively independent of film thickness and lithium ion injection in the 300~1100 nm wavelength range.

  • PDF

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

Thermally Assisted Carrier Transfer and Field-induced Tunneling in a Mg-doped GaN Thin Film (Mg가 첨가된 GaN 박막에서 캐리어 전이의 열적도움과 전계유도된 터러링 현상)

  • Chung, Sang-Geun;Kim, Yoon-Kyeom;Shin, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.431-435
    • /
    • 2002
  • The dark current and photocurrent(PC) spectrum of Mg-doped GaN thin film were investigated with various bias voltages and temperatures. At high temperature and small bias, the dark current is dominated by holes thermally activated from an acceptor level Al located at about 0.16 eV above the valence band maximum $(E_v)$, The PC peak originates from the electron transition from deep level A2 located at about 0.34 eV above the $E_v$ to the conduction band minimum $(E_ C)$. However, at a large bias voltage, holes thermally activated from A2 to Al experience the field-in-duces tunneling to form one-dimensional defect band at Al, which determines the dark current. The PC peak associated with the transition from Al to $E_ C$ is also observed at large bias voltages owing to the extended recombination lifetime of holes by the tunneling. In the near infrared region, a strong PC peak at 1.20 eV appears due to the hole transition from deep donor/acceptor level to the valence band.

Crystal growth and photocurrent of $Mg_{x}Zn_{1-x}$Te single crystals ($Mg_{x}Zn_{1-x}$Te 단결정 성장과 광전류 특성)

  • 전용기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.1
    • /
    • pp.6-13
    • /
    • 2001
  • By using a vertical Bridgeman method, single crystalline structures of $Mg_xZn_{1-x}Te(0{\le}X{\le}0.48)$ were grown for various Mg mole compositions. With the increasing Mg fraction, the lattice constant is linearly increased from 6.103 to 6.239$\AA$ for the range of $0{\le}X{\le}0.48$ and the lattice constant of zincblende MgTe was linearly extrapolated to the value of 6.433$\pm$0.002$\AA$. The optical properties of the crystalline structure were characterized with photocurrent measurements. As a results of photocurrent spectra, the single crystalline $Mg_xZn_{1-x}Te$ show the energy bandgap of 2.380 and 2.260eV at 4.2 and 294 K, respectively. The photocurrent peak blueshifts with increasing Mg mole fraction and show the linear dependence of energy bandgap, $E_g$(X)=b+(0.8)X. The extrapolation shows the energy bandgaps of MgTe of 3.18 and 3.06eV at the temperatures of 4.2 and 294K, respectively. Furthermore, the photocurrent peaks redshifts with increasing temperature and the temperature coefficient is given to the value of $dE_g$/dT=-(5.6~$6.1){\times}10^{-4}$eV/K. for the temperature range above 100K.

  • PDF

Temperature-dependent photoluminescence properties of amorphous and crystalline V2O5 films (비정질과 결정질 V2O5 박막의 온도에 따른 발광특성)

  • Kang, Manil;Chu, Minwoo;Kim, Sok Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.202-206
    • /
    • 2014
  • In order to investigate the photoluminescence (PL) properties of $V_2O_5$ films, amorphous and crystalline films were prepared by using RF sputtering system, and the PL spectra of the films were measured at the temperatures ranging from 300 K to 10 K. In the amorphous $V_2O_5$ film grown at room temperature, a PL peak centered at ~505 nm was only observed, and in the crystalline $V_2O_5$ film, two peaks centered at ~505 nm and ~695 nm, which is known to correspond to oxygen defects, were revealed. The position of PL peak centered at 505 nm for both the amorphous and crystalline $V_2O_5$ films showed a strong dependence on temperature, and the positions were 2.45 eV at 300 K and 2.35 eV at 10 K, respectively. The PL at 505 nm was due to the band energy transition in $V_2O_5$, and also, the reduction of the peak position energy with decreasing temperature was caused by a decrement of the lattice dilatation effect with reducing electron-phonon interaction.

Study on Point Defect for $AgGaS_2$ Single Crystal Thin film Obtained by Photoluminescience Measurement Method (광발광 측정법에 의한 $AgGaS_2$ 단결정 박막의 점결함 연구)

  • Hong, Kwang-Joon;Kim, Koung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.2
    • /
    • pp.117-126
    • /
    • 2005
  • A stoichiometric mixture of evaporating materials for $AgGaS_2$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $AgGaS_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $590^{\circ}C\;and\;440^{\circ}C$, respectively The temperature dependence of the energy band gap of the $AgGaS_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.7284 eV-(8.695{\times}10^{-4}eV/K)T^2/T(T+332K)$. After the as-grown $AgGaS_2$, single crystal thin films was annealed in Ag-, S-, and Ga-atmospheres, the origin of point defects of $AgGaS_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10K. The native defects of $V_{Ag},\;V_s,\;Ag_{int},\;and\;S_{int}$, obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Ag-atmosphere converted $AgGaS_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $AgGaS_2$ crystal thin films did not form the native defects because Ga in $AgGaS_2$ single crystal thin films existed in the form of stable bonds.

Reactive Magnetron Sputtering 법을 이용한 SnO 투명산화물반도체 합성 및 특성분석

  • Lee, Seung-Hui;Kim, Jeong-Ju;Heo, Yeong-U;Lee, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.265.1-265.1
    • /
    • 2016
  • 여러 application에 적용하기 위하여 p-type SnO 박막과 전극 간의 접촉 저항을 분석이 필요하였다. 이를 Transmission Line Method(TLM) 패턴 소자를 제작한 후 전기적 특성을 분석함으로써 알 수 있었다. $Si/SiO_2$ 기판에 Reactive Magnetron Sputtering법을 이용하여 c축 우선 배향된 SnO를 100nm 증착하고 photolithography 공정을 통해 전극을 패턴화하여 100nm 두께로 증착하였다. 전극 간 거리는 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, $1024{\mu}m$로 각각 2배씩 증가하는 패턴이고 폭 W는 $300{\mu}m$ 이다. p-type SnO 의 경우, work function이 4.8eV이기 때문에 전극과 ohmic contact이 되기 위해서는 4.8eV보다 높은 work function 값을 가지는 전극이 필요하였다. 이 조건과 맞는 후보로 Ni(5.15eV), ITO(5.3eV)를 설정한 후 소자를 제작하였다. 제작된 소자는 열처리 하지 않은 소자와 Rapid Thermal Annealing(RTA) 장비에서 $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$에서 각각 1분씩 열처리한 소자의 특성을 분석하였다. 열처리 하지 않은 소자의 경우 Ni 전극의 specific contact resistance는 $3.42E-2{\Omega}$의 값을 나타내었고, ITO의 경우 $3.62E-2{\Omega}$값을 나타내었다.

  • PDF

Effect of Niobium on the Electronic Properties of Passive Films on Zirconium Alloys

  • Kim, Bo Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2003
  • The effects of Niobium on the structure and properties(especially electric properties) of passive film of Zirconium alloys in pH 8.5 buffer solution are examined by the photo-electrochemical analysis. For Zr-xNb alloys (x = 0, 0.45, 1.5, 2.5 wt%), photocurrent began to increase at the incident energy of 3.5 ~ 3.7 eV and exhibited the $1^{st}$ peak at 4.3 eV and the $2^{nd}$ peak at 5.7 eV. From $(i_{ph}hv)^{1/2}$ vs. hv plot, indirect band gap energies $E_g{^1}$= 3.01~3.47 eV, $E_g{^2}$= 4.44~4.91 eV were obtained. With increasing Nb content, the relative photocurrent intensity of $1^{st}$ peak significantly increased. Compared with photocurrent spectrum of thermal oxide of Zr-2.5Nb, It was revealed that $1^{st}$ peak in photocurrent spectrum for the passive film formed on Zr-Nb alloy was generated by two types of electron transitions; the one caused by hydrous $ZrO_2$ and the other created by Nb. Two electron transition sources were overlapped over the same range of incident photon energy. In the photocurrent spectrum for passive film formed on Zr-2.5Nb alloy in which Nb is dissolved into matrix by quenching, the relative photocurrent intensity of $1^{st}$ peak increased, which implies that dissolved Nb act as another electron transition source.

A Study of Nerve Conduction Velocity of Normal Adults (정상성인의 신경전도속도에 관한 연구)

  • Choi, Kyoung-Chan;Hah, Jung-Sang;Byun, Yeung-Ju;Park, Choong-Suh;Yang, Chang-Heon
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.1
    • /
    • pp.151-163
    • /
    • 1989
  • Nerve conduction studies help delineate the extent and distribution of the neural lesion. The nerve conduction was studied on upper(median, ulnar and radial nerves) and lower(personal, posterior tibial and sural nerves) extremities in 83 healthy subjects 23 to 66 years of age. and normal values were established(Table 1). The mean motor terminal latency (TL) were : median. 3.6(${\pm}0.6$)milliseconds ; ulnar. 2.9(${\pm}0.5$) milliseconds ; radial nerve. 2.3(${\pm}0.4$) milliseconds. Mean motor nerve conduction velocity(MNCV) along distal and proximal segments: median. 61.2(${\pm}9.1$) (W-E) and 57.8(${\pm}13.2$) (E-Ax) meters per second ; ulnar. 63.7(${\pm}9.1$) (W-E) and 50.(${\pm}10.0$) meters per second. Mean sensory nerve conduction velocity(SNCV) : median. 34.7(${\pm}6.7$) (F-W), 63.7(${\pm}7.1$) (W-E) and 62.8(${\pm}12.3$) (E-Ax)meters per second ; ulnar. 38.0(${\pm}6.7$)(F-W), 63.4(${\pm}7.5$) (W-E) and 57.0(${\pm}10.1$) (E-Ax)meters per second ; radial, 45.3(${\pm}6.8$) (F-W) and 64.2(${\pm}11.0$) (W-E) meters per second ; sural nerve, 43.4(${\pm}6.1$) meters per second. The amplitudes of action potential and H-reflex were also standardized. Mean H latency was 28.4(${\pm}3.2$) milliseconds. And. the fundamental principles, several factors altering the rate of nerve conduction and clinical application of nerve stimulation techniques were reviewed.

  • PDF

Thermoluminescence from X-Ray Irradiated Beta-Eucryptite (X-선 조사된 Beta-eucryptite의 열자극 발광)

  • 김태규;이병용;최범식;강현식;추성실;황정남
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.9-18
    • /
    • 1992
  • In this study, beta-eucryptite is fabricated and the thermal parameters of this material have been investigated. The thermoluminescence from 4MeV X-ray irradiated beta-eucryptite have been measured over the temperature range of 300K-600K. Thermoluminescence curve from X-ray irradiated beta-eucryptite shows five peaks located at 342K, 392K, 438K, 474K, and 527K. $\tau$, $\delta$ and $\omega$ of peak at 527K are 35K, 39K and 74K, respectively and this peak is found to be 2nd order kinetics. The activation energy of peak shape method is calculated to be 1.03eV and the frequency factor for 527K curve is calculated to be 3.9x10$\^$8/sec$\^$-1/. Based on the various heating rates methods, the activation energy of the peak is computed to be 1.02${\pm}$0.05eV that is similar to 1.19${\pm}$0.03eV of initial rise method. The linearity of thermoluminescence intensity and radiation flux is valid up to 50Gy and beyond higher dose the supralinearity and saturation come out.

  • PDF