• Title/Summary/Keyword: $D_2$ Injection Angle

Search Result 47, Processing Time 0.028 seconds

1D Computer Simulation of Diesel Engine Intake Port Swirl Ratios Considering the Fuel Injection Timing Range (디젤 엔진 연료 분사 타이밍 구간에서의 흡기 포트 스월비 1D 컴퓨터 시뮬레이션)

  • Oh, Dae San;Lee, Choong Hoon
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • This study was performed to calculate the swirl ratio of a diesel engine intake port by a 1D computer simulation under actual engine operating conditions. The swirl ratio of the intake port was simulated according to the change of the engine speed during the operation of the motoring without fuel injection. The swirl ratio of the intake port was simulated according to changes in the crank angle during the four-cycle operation of intake, compression, expansion and exhaust. The swirl ratio represented by the three regions of the piston, center and squish was simulated. Among the three regions, the piston-region swirl ratio is important for effective air-fuel mixing in the engine cylinder. In particular, it was confirmed during the simulation that the piston swirl ratio before and after the compression top dead center (TDC) point when fuel is injected in the DI diesel engine can have a significant effect on the mixing of air and fuel. It was desirable to set the average piston swirl ratio over a crank angle section before and after compression TDC as the representative swirl ratio of the cylinder head intake port according to the change of the engine speed.

Spray Characteristics of Hydrotreated Biodiesel Blended Fuels

  • Kim, Duckhan;Oh, Sehun;Kim, Seonghwan;No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2013
  • Hydrotreated biodiesel (HBD) would be one of the promising alternative fuels instead of current biodiesel. In this study, spray characteristics in terms of spray penetration and spray angle were conducted experimentally including calculated SMDs as well. The ambient pressures of 1, 3, and 5 MPa and injection pressures of 30, 80, and 130 MPa were introduced and the fuels employed were petro-diesel, and 2, 10, 20, 30, and 50% for hydrotreated biodiesel, respectively. The result of this study found that the more HBD blended diesels have the slightly shorter spray tip penetration lengths especially on the lowest injection pressure and at the highest ambient pressure, but have the larger spray angles and SMDs than petro-diesel. Consequently, this study found that HBD has a little bit merits and demerits of macro- and micro- spray patterns compared to petro-diesel.

A Study on Suitable Injection Pressure of Ultra High Pressure Injection System (초고압 분사의 적정분사압력에 관한 연구)

  • Jeong, D.Y.;Park, S.J.;Kim, H.J.;Lee, Jong-T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.913-918
    • /
    • 2000
  • Spray and combustion characteristics were investigated to find suitable injection pressure by using ultra high pressure injection and single shot diesel combustion systems. As injection pressure was increased, spray penetration and spray angle were increased continuously until 2,000bar, but after this injection pressure region the rate of increase was decreased suddenly. Combustion characteristics were also enhanced until 2,000bar of injection pressure.

  • PDF

A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection (커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Kwak, Sangshin;Shin, Suk Shin;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.

Spray Behaviors and Characteristics of Droplet Distribution in GDI injector (GDI 엔진 인젝터의 연료 분무 거동 및 액적 분포 특성)

  • Kim, M.K.;Lee, C.S.;Lee, K.H.;Jin, D.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.16-21
    • /
    • 2001
  • This paper describes the macroscopic behavior and atomization characteristics of the high-pressure gasoline swirl injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. The atomization characteristics of gasoline spray such as mean diameter and mean velocity of droplets were measured by the phase Doppler particle analyzer system. The macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 7 and 10 MPa of injection pressure under different spray cone angle. The results of this work show that the geometry of injector was more dominant over the macroscopic characteristics of spray than the fuel injection pressure and injection duration. As for the atomization characteristics, the increase of injection pressure resulted in the decrease of fuel droplet diameter and the atomization characteristics differed as to the spray cone angle. The most droplets had under $25{\mu}m$ diameter and for the large droplets(upper $40{\mu}m$) as the spray grew the atomization presses were very slow. Comparison results between the measured droplet distribution and the droplet distribution functions revealed that the measured droplet distribution is very closed to the Normal distribution function and Nukiyama-Tanasawa's function.

  • PDF

On the $NO_x$ in Direct Injection diesel engine (직접분사식 디이젤의$NO_x$에 관하여)

  • 안수길
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 1976
  • To investigate the relation of $NO_x$ emission and consumption rate in a direct injection diesel engine with a multihole nozzle under same fuel consumption and rpm, a naphthyl ethylenediaming method on NO, emission and Tektronix oscilloscop on the indicator diagrams have been used. Comparisons of the $NO_x$ emission and fuel consumption rate made on various conditions have led to the fllowing results. 1. The higher the injection pressure in the later injection time the lower $NO_x$ emission and the fuel consumption rate have been attained. 2. By the change of nozzle hole diameter under the same injection pressure, the $NO_x$ emission was much more lowered in the small diameter than large one, but fuel consumption rate was in inverse proption to the $NO_x$ emission. 3. The effect of injection spray angle, $\frac{1_n}{d_n}$ on $NO_x$ emission, fuel consumption rate under same injection time and injection pressure was neglectable.

  • PDF

A Study on the Fiber Orientation and Fiber Content Ratio Distribution during the Injection Molding for FRP (FRP의 사출성형에 있어서 섬유배향상태와 섬유함유율분포에 관한 연구)

  • Kim J. W.;Lee D. G.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.252-257
    • /
    • 2005
  • Injection molding is a very important industrial process for the manufacturing of plastics objects. During an injection molding process of composites, the fiber-matrix separation and fiber orientation are caused by the flow of molten polymer/fiber mixture. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation' orientation and injection molding conditions. So far, there is no research on the measurement of fiber orientation using image processing. In this study, the effects of fiber content ratio and molding condition on the fiber orientation-angle distributions are studied experimentally. Using the image processing method, the fiber orientation distribution of weld-line in injection-molded products is assessed. And the effects of fiber content and injection mold-gate conditions on the fiber orientation are also discussed.

  • PDF

2-Dimensional Film Cooling Characteristics with the Height Variation of a Stepped Slot Exit (계단형 슬롯출구의 높낮이 변화에 따른 2차원 막냉각 특성)

  • Son, Chang-Ho;Kim, Tae-Mook;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.46-54
    • /
    • 2005
  • Film cooling characteristics has been examined numerically for the height variation of a stepped slot exit. In this study, the upstream wall height of the stepped slot exit varies from -2d (d = slot width) to 3d, blowing ratio ranges from 0.5 to 3, and injection angles are $15^{\circ},\;30^{\circ},\;and\;45^{\circ}$. The results showed that film cooling performance was mainly subjected to the magnitude of recirculation region near the downstream-side slot exit as well as the magnitude and the distribution region of turbulent kinetic energy due to the local velocity and momentum differences between the coolant and the main flow near the slot exit. The up-1d type slot at higher blowing ratios over 2 and the flat type slot at lower blowing ratios below 1 have the best film cooling performances, in case of the injection angles of $30^{\circ},\;and\;45^{\circ}$, respectively. Compared with the other injection angles, in case of the injection angles of $15^{\circ}$, the best film cooling performances was shown in even a higher upstream wall (up-3d) at higher blowing ratio like 3 by the gradual reduction of the coolant velocity which minimizes the local velocity differences between the coolant and the main flow near the slot exit.

Effect of injection pressure on the atomization characteristics of a liquid sheet-type swirl injector for Urea-SCR system (Urea-SCR시스템 액막형 선회분사기의 분사압력변화에 따른 무특성에 관한 연구)

  • Kim, Duckjin;Yang, Donguk;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.510-519
    • /
    • 2013
  • In this study, the spray characteristics of a pressure swirl atomizer classified into a liquid sheet-type swirl nozzle for Urea-SCR system were investigated experimentally with the variation of injection pressure. The length to diameter ratio ($l_o/d$) of the nozzle was 3.1, and the swirler was set inside the nozzle tip to give injecting fluid angular momentum. The injection duration of the nozzle was controlled by PWM (pulse width modulation) modes. The development processes of the spray were imaged by a 2-D PIV system, and the change of spray angle was measured. The atomization characteristics, including axial velocity and SMD, were measured using a 2-D PDA system with the injection pressures at room temperature and ambient pressure conditions. As the experimental results, the injection pressure had a significant impact on the spray structure showing a different shape around the spray leading edge, and the smaller SMD was observed with increasing injection pressures, which was similar to that of the previous work.

A study on the spray characteristics of hydrocarbon-fuels with viscosity variations (점도변화에 따른 탄화수소계 연료의 분무특성에 관한 연구)

  • Lee, Yong-Il;Han, Jae-Seob
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2001
  • An experimental study was carried out to understand the spray characteristics of three kinds(kerosene, heating oil & diesel) of hydrocarbon-fuels. Fuel temperature and injection pressure were main variables in the experiment. Fuel Temperature was changed to obtain various levels of fuel viscosity. Spray angle and spray length were measured by using LVS(Laser Vapor Screen) photographs. 1D PDPA system was used to measure droplet size & droplet velocity. In room temperature, spray characteristics of three kinds of fuels were good, especially in case the fuel injection pressure was more than $6Kgf/cm^2$ It was also found that spray characteristics were poor in case fuel kinematic viscosity was more than 5cSt.

  • PDF