• 제목/요약/키워드: $DIO_3$ (ozonated DI water)

검색결과 2건 처리시간 0.022초

Removal of Organic Wax and Particles on Final Polished Wafer by Ozonated DI Water

  • Yi, Jae-Hwan;Lee, Seung-Ho;Kim, Tae-Gon;Lee, Gun-Ho;Choi, Eun-Suck;Park, Jin-Goo
    • 한국재료학회지
    • /
    • 제18권6호
    • /
    • pp.307-312
    • /
    • 2008
  • In this study, a new cleaning process with a low cost of ownership (CoO) was developed with ozonated DI water ($DIO_3$). An ozone concentration of 40 ppm at room temperature was used to remove organic wax film and particles. Wax residues thicker than $200\;{\AA}$ remained after only a commercial dewaxer treatment. A $DIO_3$ treatment in place of a dewaxer showed a low removal rate on a thick wax layer of $8000\;{\AA}$ due to the diffusion-limited reaction of ozone. A dewaxer was combined with a $DIO_3$ rinse to reduce the wax removal time and remove wax residue completely. Replacing DI rinse with the $DIO_3$ rinse resulted in a surface with a contact angle of less than $5^{\circ}$, which indicates no further cleaning steps would be required. The particle removal efficiency (PRE) was further improved by combining a SC-1 cleaning step with the $DIO_3$ rinsing process. A reduction in the process time was obtained by introducing $DIO_3$ cleaning with a dewaxing process.

오존수를 이용한 실리콘 웨이퍼 연마 후 지용성 왁스 및 오염입자 제거의 영향 (Effect of Organic wax residues and particles removal by DIO3 (ozonated DI water) after Silicon Wafer batch Polishing Process)

  • 이재환;이승호;김태곤;박진구;이건호;배소익
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.558-559
    • /
    • 2007
  • A commercially de-waxer which kinds of solvent after was used to remove a thick organic wax film after polishing process and several steps of SC-1 cleanings were followed for the removal of organic wax residues and particles which requires long process time and high cost of ownership (COO). DIO3 was used to remove organic wax residues too achieve low COO. In this study, 0103 rinsing could use instead of 01 water rinsing. The process time and chemical consumption were reduced by using DIO3.

  • PDF