• 제목/요약/키워드: $D^{-1}$method

검색결과 11,871건 처리시간 0.048초

Calculation of the Magnetic Moments and the Dipolar Shifts for d$^1$ and d$^2$Complexes in a Strong Ligand Field of Trigonal Symmetry

  • Ahn, Sang-Woon;Suh, Hyuk-Choon;Ko, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권3호
    • /
    • pp.104-109
    • /
    • 1982
  • A method to calculate the magnetic moments for $d^1$ and $d^2$ complexes in a strong crystal field of trigonal symmetry has been developed in this work choosing the trigonal axis (Ⅲ) as the quantization axis. The calculated magnetic moments using this method for $d^1$ and $d^2$ complexes in a strong trigonal ligand field fall in the range of the experimental values. The dipolar shifts for $d^1$ and $d^2$ complexes in a strong trigonal ligand field are also calculated using the calculated magnetic susceptibility components. The calculated values of the dipolar shifts also fall in the reasonable range.

Development of 2D Tight-fitting Pattern from 3D Scan Data (3D 스캔 데이터를 활용한 밀착 패턴원형 개발)

  • Jeong, Yeon-Hee;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제30권1호
    • /
    • pp.157-166
    • /
    • 2006
  • The human body, which is composed of concave and convex curvatures, makes it difficult to transfer into 2D patterns directly from 3D data. In previous studies. Jeong, et al.(2004) suggested the block method was fester and easier when dealing with the triangular patches of male's upper dress form. Although the block method is useful to make a pattern, the information(area, length, etc.) from a 2D pattern would be different depending on the direction of the block method. As a result horizontal and diagonal block methods were suggested as optimal methods for 2D tight-fitting patterns. These block methods were closer to the original area of the 3D scan data than the vertical block method. The total area of the 2D pattern obtained by the horizontal and diagonal block methods showed little differences. In case of the horizontal and diagonal block methods, the total error of the 2D pattern area ranged from $0.01\%\~0.25\%$. In comparing the length of the 2D pattern with that of the 3D scan data, the obtained 2D pattern was $0.1\~0.2cm$ shorter than the 3D scan data, which was within the acceptable range of errors in making clothes. 3D space distribution images between the body surface and the experimental clothing were also measured and $3\%$ enlargement of the original pattern was verified as the adequate adjustment.

Acquisition of 3D Spatial Information using UAV Photogrammetric Method (무인항공 사진측량을 이용한 3D 공간정보 취득)

  • Jung, Sung-Heuk;Lim, Hyeong-Min;Lee, Jae-Kee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제28권1호
    • /
    • pp.161-168
    • /
    • 2010
  • This study aims to propose a method that shall rapidly acquire 3D information of the fast and frequently changing city areas by using the images taken by the UAV photogrammetric method, and to develop the process of the acquired data. For this study's proposed UAV photogrammetric method, low-cost UAV and non-metric digital camera were used. The elements of interior orientation were acquired through camera calibration. The artificial 3D model of the artificial structures was constructed using the image data photographed at the target area and the results of the ground control point survey. The digital surface model was created for areas that were changed due to a number of civil works. This study also analyzes the proposed method's application possibility by comparing a 1/1,000 scale digital map and the results of the ground control point survey. Through the above studies, the possibilities of constructing a 3D virtual city model renewal of 3D GIS database, abstraction of changed information in geographic features and on-demand updating of the digital map were suggested.

Combining an Edge-Based Method and a Direct Method for Robust 3D Object Tracking

  • Lomaliza, Jean-Pierre;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • 제24권2호
    • /
    • pp.167-177
    • /
    • 2021
  • In the field of augmented reality, edge-based methods have been popularly used in tracking textureless 3D objects. However, edge-based methods are inherently vulnerable to cluttered backgrounds. Another way to track textureless or poorly-textured 3D objects is to directly align image intensity of 3D object between consecutive frames. Although the direct methods enable more reliable and stable tracking compared to using local features such as edges, they are more sensitive to occlusion and less accurate than the edge-based methods. Therefore, we propose a method that combines an edge-based method and a direct method to leverage the advantages from each approach. Experimental results show that the proposed method is much robust to both fast camera (or object) movements and occlusion while still working in real time at a frame rate of 18 Hz. The tracking success rate and tracking accuracy were improved by up to 84% and 1.4 pixels, respectively, compared to using the edge-based method or the direct method solely.

Antibacterial, Antifungal and Anticonvulsant Evaluation of Novel Newly Synthesized 1-[2-(1H-Tetrazol-5-yl)ethyl]-1H-benzo[d][1,2,3]triazoles

  • Rajasekaran, Aiyalu;Murugesan, Sankaranarayanan;AnandaRajagopal, Kalasalingam
    • Archives of Pharmacal Research
    • /
    • 제29권7호
    • /
    • pp.535-540
    • /
    • 2006
  • Several novel 1-[2-(1H-tetrazol-5-yl) ethyl]-1H-benzo[d][1,2,3]triazoles (3a-h) have been synthesized by the condensation of 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) and appropriate acid chlorides. 1-[2-(1H-tetrazol-5-yl)-ethyl]-1H-benzotriazole (2) was synthesized by reacting 3-(1H-benzo[d][1,2,3]triazol-1-yl)propanenitrile with sodium azide and ammonium chloride in the presence of dimethylformamide. The synthesized compounds were characterized by IR and PMR analysis. The titled compounds were evaluated for their in vitro antibacterial and antifungal activity by the cup plate method and anticonvulsant activity evaluated by the maximal electroshock induced convulsion method in mice. All synthesized compounds exhibited moderate antibacterial activity against Bacillus subtilis and moderate antifungal activity against Candida albicans. Compounds 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(4-aminophenyl)methanone 3d and 5-(2-(1 H-benzo[d][1,2,3]triazo-1-yl)ethyl)-1H-tetrazol-1-yl)(2-aminophenyl)methanone 3e elicited excellent anticonvulsant activity.

A Comparative Study of Blood Lead Measurement by Polarized Zeman Effect Correction AAS and D2 Correction AAS Method (편광 Zeeman 보정 및 D2 보정 방법에 의한 혈중연 측정치의 비교 연구)

  • Lee, Seok Ki;Ahn, Kyu Dong;Lee, Byung Kook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • 제5권1호
    • /
    • pp.59-67
    • /
    • 1995
  • Blood lead assay by $D_2$ lamp background correction method of atomic absorption spectrophotometer(AAS) with wavelength of 283.3 nm is most popular in occupational health practice in Korea. On the other hand, $D_2$ lamp background correction method with wavelength of 217.0 nm is also often used in general chemical analysis for lead assay in general purpose. But both methods have some weakness of background correction which brought direct effect on the results of analysis. Recently blood lead assay with polarized Zeeman effect of AAS was introduced and is now preferred in many laboratory than $D_2$ correction method in blood lead analysis. But still AAS with $D_2$ lamp are widely used in the field of occupational health in Korea. This study compared blood lead assay data with $D_2$ correction methods(283.3 and 217.0 nm) and with that of polarized Zeeman effect correction method to evaluate the validity of 02 correction methods. The results obtained were as follows; 1. Taking the value of polarized Zeeman effect method as reference value of 1.00, the mean relative value of $D_2$ correction method with wavelength of 217.0 nm was 0.92 and that with wavelength of 283.3 nm was 0.90 respectively in the analysis of blood lead whose value were below $20.0{\mu}g/dl$(p<0.001). Both mean values were statistically smaller than polarized Zeeman effect correction method. But in the analysis of blood whose value were between 20.0 to $20.0{\mu}g/dl$, the mean relative value of $D_2$ correction method was 0.96 in both wavelength and did not differ from polarized Zeeman effect method(p<0.001). There was no difference of blood lead between $D_2$ correction method and polarized Zeeman effect method in the analysis of blood lead whose value were over $40.0{\mu}g/dl$. 2. The variations of background correction value in polarized Zeeman effect method were not changed by increase of blood lead, but those in $D_2$ correction methods were increased by the increase of blood lead. While then relative standard deviation(RSD) of data measured by Zeeman effect method were decreased by the increase of blood lead, those by $D_2$ methods were nol differed by the increase of blood lead.

  • PDF

Design and Implementation of High Performance System with Reduced Hardware Architecture to Convert a Color Tone (감소된 하드웨어 구조를 가지는 고성능 색조 변환 시스템의 설계 및 구현)

  • 문오학;이호남;이봉근;강봉순;홍창희
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제2권4호
    • /
    • pp.1-8
    • /
    • 2001
  • In this paper we propose high performance system with reduced hardware architecture to convert a color tone. Conversion for the color tone of a input image is necessary to calculate the color temperature of the image Conventional way of calculating the temperature uses algorithm using the method calculating 2-D chromaticity coordinates. But it requires bulky hardware[1]. This paper propose the color temperature calculation method about 1-D chromaticity coordinates that reduces the hardware complexity while keeping the performance of the 2-D color temperature algorithm . The proposed method is verified by fLCD-TV system using the Xilinx Virtex FPGA XCV 2000E-6BG560 that has 1344*806 resolution and requires a high-speed 65MHz operation.

  • PDF

A Study on Kernel Size Variations in 1D Convolutional Layer for Single-Frame supervised Temporal Action Localization (단일 프레임 지도 시간적 행동 지역화에서 1D 합성곱 층의 커널 사이즈 변화 연구)

  • Hyejeong Jo;Huiwon Gwon;Sunhee Jo;Chanho Jung
    • Journal of IKEEE
    • /
    • 제28권2호
    • /
    • pp.199-203
    • /
    • 2024
  • In this paper, we propose variations in the kernel size of 1D convolutional layers for single-frame supervised temporal action localization. Building upon the existing method, which utilizes two 1D convolutional layers with kernel sizes of 3 and 1, we introduce an approach that adjusts the kernel sizes of each 1D convolutional layer. To validate the efficiency of our proposed approach, we conducted comparative experiments using the THUMOS'14 dataset. Additionally, we use overall video classification accuracy, mAP (mean Average Precision), and Average mAP as performance metrics for evaluation. According to the experimental results, our proposed approach demonstrates higher accuracy in terms of mAP and Average mAP compared to the existing method. The method with variations in kernel size of 7 and 1 further demonstrates an 8.0% improvement in overall video classification accuracy.

An Efficient Compression Method of Integral Images Using Adaptive Block Modes (적응적인 블록 모드를 이용한 집적 영상의 효율적인 압축 방법)

  • Jeon, Ju-Il;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제47권6호
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, we propose an efficient compression method of the integral images. The integral imaging is a well-known technique to represent and record three-dimensional images. The proposed method is based on three dimensional discrete cosine transform (3D-DCT). The 3D-DCT techniques for the integral images have been reported as an efficient coding method for the integral images which reduces the redundancies between adjacent elemental images. The proposed method is a compression method efficient to integral images using adaptive block mode(ABM), based on the 3D-DCT technique. In the ABM, 3D-DCT blocks adaptive to the characteristics of integral images are constructed, which produces variable block size 3D-DCT blocks, and then 3D-DCTs for the 3D blocks are performed. Experimental results show that the proposed method gives significant improvement in coding efficiency. Especially, at the high bit-rates, the proposed method is more excellent since the overhead incurred by the proposed method take less part of the total bits.