• Title/Summary/Keyword: $Cu_2SnS_3$(CTS)

Search Result 2, Processing Time 0.019 seconds

Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells (Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과)

  • Lee, In Jae;Jo, Eunae;Jang, Jun Sung;Lee, Byeong Hoon;Lee, Dong Min;Kang, Chang Hyun;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

Fabrication of Cu2SnS3 (CTS) thin Film Solar Cells by Sulfurization of Sputtered Metallic Precursors (스퍼터법을 이용한 메탈 전구체기반의 Cu2SnS3 (CTS) 박막 태양전지 제조 및 특성 평가)

  • Lee, Ju Yeon;Kim, In Young;Minhao, Wu;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Cu_2SnS_3$ (CTS) based thin film solar cells (TFSCs) are of great interest because of its earth abundant, low-toxic and eco-friendly material with high optical absorption coefficient of $10^4cm^{-1}$. In this study, the DC sputtered precursor thin films have been sulfurized using rapid thermal annealing (RTA) system in the graphite box under Ar gas atmosphere for 10 minute. The systematic variation of sulfur powder during annealing process has been carried out and their effects on the structural, morphological and optical properties of CTS thin films have been investigated. The preliminary power conversion efficiency of 1.47% with a short circuit current density of $33.9mA/cm^2$, an open circuit voltage of 159.7 mV, and a fill factor of 27% were obtained for CTS thin film annealed with 0.05g of S powder, although the processing parameter s have not yet been optimized.