• Title/Summary/Keyword: $Cu_2S$

Search Result 2,601, Processing Time 0.029 seconds

A Study on Properties of CuInS2 Thin Films by Cu/ln Ratio (Cu/In 비에 따른 CuInS2 박막의 특성에 관한 연구)

  • Yang, Hyeon-Hun;Park, Gye-Choon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.594-599
    • /
    • 2007
  • [ $CulnS_2$ ] thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature $200^{\circ}C$. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the annealed $200^{\circ}C$ of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and Hall measurement system. The compositional deviations from the ideal chemical formula for $200^{\circ}C$ material can be conveniently described by non-molecularity$({\Delta}x=[Cu/In]-1)$ and non-stoichiometry $({\Delta}y=[{2S/(Cu+3In)}-1])$. The variation of ${\Delta}x$ would lead to the formation of equal number of donor and accepters and the films would behave like a compensated material. The ${\Delta}y$ parameter is related to the electronic defects and would determine the type of the majority charge carriers. Films with ${\Delta}y>0$ would behave as p-type material while ${\Delta}y<0$ would show n-type conductivity. At the sane time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}cm^{-3},\;312.502cm^2/V{\cdot}s\;and\;2.36{\times}10^{-2}\;{\Omega}{\cdot}cm$, respectively.

A Study on th properties and Fabrication of $CuGaS_2$ Ternary Compound thin film ($CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-280
    • /
    • 2008
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to 150$[^{\circ}C]$ at intervals of 50$[^{\circ}C]$. As a result, at 400$[^{\circ}C]$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

Optical proper of S solute CuInSe$_2$ thin film (S를 고용한 CuInSe$_2$ 박막의 광학 특성)

  • 김규호;이재춘;김민호;배인호
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.136-143
    • /
    • 1997
  • The photvoltaic power system has received considerable attention as the petroleumalterative energies to the environmental problems in the wored scale. $CuLnSe_2$is one ofthe most promising materials for the fabrication of large-area modules and low cost photovoltaic devices. Sulfur solute CuInSe2 thin films were prepared by RF sputtering using powder targer which were previously compacted by powder of $Cu_2Se, \;In_2Se_3, \;Cu_2S, \;and\;In_2S_3$ in various ratios. The results induicated that the sulfur ratio, the(112) texture, and the energy band gap were increased by the increase of the S/(S+Se) that was controlled by stoichiometric compound. The energy band gap can be shifted from 1.04eV to 1.50eV by abjusting the S/(S+Se) ratio, which maich it possible to obtain perfect match to the solar spectrum.

  • PDF

The Synthesis of CuInS2 Nanoparticles by a Simple Sonochemical Method

  • Park, Jae-Young;Park, Jong-Pil;Hwang, Cha-Hwan;Kim, Ji-Eon;Choi, Myoung-Ho;Ok, Kang-Min;Kwak, Ho-Young;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2713-2716
    • /
    • 2009
  • $CuInS_{2}$ nanoparticles were synthesized by a simple sonochemical method; First, Cu nanoparticles were prepared from $CuInS_{2}$ in methanol solution by a one pot reaction through the sonochemistry under multibubble sonoluminescence (MBSL) conditions. Second, the resulting Cu nanoparticles were treated with $InCl_3{\cdot}4H_2O$ and $CH_3CSNH_2$ (thioacetamide) at the same MBSL conditions to synthesize $In_2S_3$-coated Cu nanoparticles in methanol solution. Then, they were transformed into $CuInS_{2}$ (CIS) nanoparticles of 20 $\sim$ 40 nm size in diameter by thermal heating at 300 ${^{\circ}C}$ for 2 hr. The prepared CIS nanoparticles, of which band gap is 1.44 eV, were investigated by X-ray diffractometer, UV-Vis spectrophotometer, inductively coupled plasma spectrometer, and high resolution-transmission electron microscope.

Luminescent Characteristics of SrS:CuCl Thin-Film Electroluminescent(TFEL) Devices on CuCl Concentrations (CuCl 농도에 따른 SrS:CuCl 박막 전계발광소자의 발광특성)

  • Lee, Sun-Seok;Im, Seong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.8
    • /
    • pp.17-23
    • /
    • 2002
  • The SrS:CuCl TFEL devices were fabricated by electron-beam deposition and the luminescent characteristics of the fabricated SrS:CuCl TFEL devices were studied. The SrS powder was used as the host materials and 0.05 ~ 0.6 at% of CuCl powder was added as the luminescent center. The deposition conditions of substrate temperature, electron beam current, and deposition rate were 500 $^{\circ}C$ , 20 ~ 40 mA, and 5 ~ 10 /sec, respectively The total thickness of the phosphor layer deposited was 6000 . The blue emission at low CuCl concentrations was observed from the luminescent centers of monomer, dimer, trimer, and tetramer, The bright greenish blue emission at high CuCl concentrations was observed from the dimer and trimer luminescent centers. The maxium luminance was observed from the SrS:CuCl TFEL devices doped with 0.2 at% of CuCl concentration and the threshold voltage, luminance(L$_{40}$ ), efficiency(η$_{20}$) and CIE coordinate obtained were 55 V, 728 cd/$m^2$, 0.49 lm/w, and (0.21, 0.33), respectively..

Effects of $Cu^{++}-Catalyzed$ Peroxidation on Collagen Gelation ($Cu^{++}-Catalyzed$ Peroxidation이 Collagen Gelation에 미치는 영향)

  • Chung, Myung-Hee;Kim, Myung-Suk;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.35-44
    • /
    • 1983
  • reactive oxygen species에 의해 나타나는 reactivity에 있어서 metal ions이 관여함이 시사되고 있다. 이미 알려진 reactive oxygen species와 metal ions의 상호작용 이외에 특히 $Cu^{++}$$H_2O_2$가 강력한 peroxidative action을 나타낸다는 사실이 알려져 있으며 $Cu^{++}-H_2O_2$가 biological system 에서의 조직파괴에 관여할 가능성이 저자들에 의해서 효소 및 조직치 구조 단백질의 gradation 효과를 관찰함으로써 시사되었다. 본 연구는 $H_2O_2$ 혹은 $H_2O_2$를 생성하는 효소계(xanthine과 xanthine oxidase 및 glucose과 glucose oxidase)에 $Cu^{++}$을 첨가하여 $Cu^{++}-H_2O_2$에 의한 peroxidation의 효과를 collagen gelation을 통하여 확인코저 수행하였으며 다음과 같은 결과를 얻었다. 1) $Cu^{++}(20\;{\mu}M)$$H_2O_2$에 의하며 collagen gelation은 현저히 억제되었으며 이같은 억제효과는 양자의 농도에 비례하였다. 2) $Cu^{++}-H_2O_2$ reactivity를 확인하는 다른 방법으로 glucose oxidase system를 이용하였다. glucose oxidase$(2.5{\mu}g/ml)$ 와 glucose(0.5 mM)는 collagen gelation에 영향을 미치지 않았으나 이에 $Cu^{++}$이 존재하면 gelation이 억제되었다. 이때 억제정도는 $glucose(0.125{\sim}l.25\;mM)$$Cu^{++}$의 농도에 비례하였다. 3) 여러 reactive oxygen species 가운데 $Cu^{++}-H_2O_2$ reactivity를 xanthine oxidase system을 이용하여 확인하였다. (a) collagen gelation은 xanthine oxidase(30 munits/ml)와 xanthine$(0.25{\sim}2\;mM)$에 의하여 억제되었다. (b) 이때 나타나는 collagen gelation의 억제는 superoxide dismutase에 의하여 완전히 회복되었으나 catalase에 의해서는 더욱 촉진되었다. 그러나 catalase에 의한 억제효과의 촉진은 1,4-diazabicyclo(2,2,2)octane에 의하여 완전히 소실되었다. 따라서 이 xanthine oxidase system에서는 $O_2-,\;H_2O_2,\;^1O_2$이 관여함을 알 수 있었다. (c) 그러나 $Cu^{++}(10\;{\mu}M)$이 존재하였을 때 collagen gelation은 superoxie dismutase에 의해 더욱 억제되었고 catalase에 의해서는 완전히 회복되었다. xanthine oxidase계에서 얻어진 결과는 여러 reactive oxygen species가운데 $H_2O_2$$Cu^{++}$에 의하여 peroxidation효과를 나타냄을 알 수 있었다. 이상의 결과로 미루어 볼 때 reactive oxygen species와 metal ions과의 상호작용 가운데 $Cu^{++}-H_2O_2$는 강한 반응을 나타내는 특이한 구성요소이고 헌재 시사되고 있는 reactive oxygen species의 biological effects에 비추어 $Cu^{++}-catalyzed peroxidation$도 병적상태에서 생체에 유해한 작용을 나타내는 요소임을 시사하며 특히 염증시 조직파괴역할에 관하여 고찰하였다.

  • PDF

Consideration on $H_2S$ Sensing Mechanism of CuO-$SnO_2$ Thick Film through the Analysis of the Temperature-Electrical Resistance Characteristics (온도-전기저항 특성 해석을 통한 CuO-$SnO_2$ 후막 소자의 $H_2S$ 감지기구 고찰)

  • 유도준;준타마키;박수잔;노보류야마조에
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.379-384
    • /
    • 1996
  • The H2S sensing mechanism of CuO-SnO2 was confirmed by analyzing the electrical-resistance variation with temperature under an H2S atmosphere. While the resistance of CuO-SnO2 thick film at N2+H2S atmosphere was almost invariant with change in temperature it increased with increasing temperature for air +H2S atmos-phere. This behavior was analyzed using an equation derived from a basic assumption based on the H2S sensing mechanism proposed before. the experimental results are sufficiently explained with the equation derived which showed that the H2S sensing mechanism was reasonable. The equation also gave a detailed analysis and physical meaning to the behavior of the resistance variation with change in H2S concentration.

  • PDF

Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films (Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향)

  • Ko, Young Min;Kim, Ji Hye;Shin, Young Min;Chalapathy, R.B.V.;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

The synthesis and properties of point defect structure of Cu2-XZnSnS4 (x=0.1, 0.2, and 0.3)

  • Bui D. Long;Le T. Bang
    • Advances in materials Research
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2024
  • Cu-based sulfides have recently emerged as promising thermoelectric (TE) materials due to their low cost, non-toxicity, and abundance. In this research, point defect structure of Cu2-xZnSnS4 (x=0.1, 0.2, 0.3) samples were synthesized by the mechanical alloying method. Mixed powders of Cu, Zn, Sn and S were milled using high energy ball milling at a rotation speed of 300 rpm in Ar atmosphere. The milled Cu2-xZnSnS4 powders were heat-treated at 723 K for 24 h, and subsequently consolidated using spark plasma sintering (SPS) under an applied pressure of 60 MPa for 15 min. The thermal conductivity of the sintered Cu2-xZnSnS4 samples was evaluated. A well-defined Cu2-xZnSnS4 powders were successfully formed after milling for 16 h, with the particle sizes mostly distributed in the range of 60-100 nm. The lattice constants of aand cdecreased with increasing composition value x. The thermal conductivity of sintered x=0.1 sample exhibited the lowest value and attained 0.93 W/m K at 673 K.

The Origin of the Metal-insulator Transitions in Non-stoichiometric TlCu3-xS2 and α-BaCu2-xS2

  • Jung, Dong-woon;Choi, Hyun-Guk;Kim, Han-jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.363-367
    • /
    • 2006
  • The structure-property relations of ternary copper chalcogenides, $TlCu_{3-x}S_2$ and $\alpha-BaCu_{2-x}S_2$ are examined. The density of states, band dispersions, and Fermi surfaces of these compounds are investigated to verify the reason of the metal-insulator transitions by extended Huckel tight-binding band calculations. The origin of the metalinsulator transitions of non-stoichiometric $TlCu_{3-x}S_2$ and $\alpha-BaCu_{2-x}S_2$ is thought to be the electronic instability induced by their Fermi surface nesting.