• Title/Summary/Keyword: $CuInGaS_2$

Search Result 184, Processing Time 0.027 seconds

A Study on th properties and Fabrication of $CuGaS_2$ Ternary Compound thin film ($CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.279-280
    • /
    • 2008
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to 150$[^{\circ}C]$ at intervals of 50$[^{\circ}C]$. As a result, at 400$[^{\circ}C]$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

A study on point defect for thermal annealed CuGaSe2 single crystal thin film (열처리된 CuGaSe2 단결정 박막의 점결함연구)

  • 이상열;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films (Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향)

  • Ko, Young Min;Kim, Ji Hye;Shin, Young Min;Chalapathy, R.B.V.;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

Fabrication of wide-bandgap β-Cu(In,Ga)3Se5 thin films and their application to solar cells

  • Kim, Ji Hye;Shin, Young Min;Kim, Seung Tae;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • $Cu(In,Ga)_3Se_5$ is a candidate material for the top cell of $Cu(In,Ga)Se_2$ tandem cells. This phase is often found at the surface of the $Cu(In,Ga)Se_2$ film during $Cu(In,Ga)Se_2$ cell fabrication, and plays a positive role in $Cu(In,Ga)Se_2$ cell performance. However, the exact properties of the $Cu(In,Ga)_3Se_5$ film have not been extensively studied yet. In this work, $Cu(In,Ga)_3Se_5$ films were fabricated on Mo-coated soda-lime glass substrates by a three-stage co-evaporation process. The Cu content in the film was controlled by varying the deposition time of each stage. X-ray diffraction and Raman spectroscopy analyses showed that, even though the stoichiometric Cu/(In+Ga) ratio is 0.25, $Cu(In,Ga)_3Se_5$ is easily formed in a wide range of Cu content as long as the Cu/(In+Ga) ratio is held below 0.5. The optical band gap of $Cu_{0.3}(In_{0.65}Ga_{0.35})_3Se_5$ composition was found to be 1.35eV. As the Cu/(In+Ga) ratio was decreased further below 0.5, the grain size became smaller and the band gap increased. Unlike the $Cu(In,Ga)Se_2$ solar cell, an external supply of Na with $Na_2S$ deposition further increased the cell efficiency of the $Cu(In,Ga)_3Se_5$ solar cell, indicating that more Na is necessary, in addition to the Na supply from the soda lime glass, to suppress deep level defects in the $Cu(In,Ga)_3Se_5$ film. The cell efficiency of $CdS/Cu(In,Ga)_3Se_5$ was improved from 8.8 to 11.2% by incorporating Na with $Na_2S$ deposition on the CIGS film. The fill factor was significantly improved by the Na incorporation, due to a decrease of deep-level defects.

A Study on the properties and Fabrication of n-type $CuGaS_2$ Ternary Compound thin film (n-type $CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구)

  • Yang, Hyeon-Hun;Baek, Su-Ung;Na, Kil-Ju;So, Soom-Youl;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.467-468
    • /
    • 2009
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to $150[^{\circ}C$] at intervals of 50[$^{\circ}C$]. As a result, at 300[$^{\circ}C$]of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

Electrical Characteristics of Solution-processed Cu(In,Ga)S2 Thin Film Solar Cells (용액 공정으로 만든 Cu(In,Ga)S2 박막태양전지의 전기적 특성)

  • Kim, Ji Eun;Min, Byoung Koun;Kim, Dong-Wook
    • Current Photovoltaic Research
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • We investigated current-voltage (I-V) and capacitance (C)-V characteristics of solution-processed thin film solar cells, consisting of $Cu(In,Ga)S_2$ and $CuInS_2$ stacked absorber layers. The ideality factors, extracted from the temperature-dependent I-V curves, showed that the tunneling-mediated interface recombination was dominant in the cells. Rapid increase of both series- and shunt-resistance at low temperatures would limit the performance of the cells, requiring further optimization. The C-V data revealed that the carrier concentration of the $CuInS_2$ layer was about 10 times larger than that of the $Cu(In,Ga)S_2$ layer. All these results could help us to find strategies to improve the efficiency of the solution-processed thin film solar cells.

Physical Properties with Cu/(In+Ga) Ratios of Cu(InGa)$Se_2$ Films (Cu(InGa)$Se_2$ 박막의 Cu/(In+Ga) 조성비에 따른 전기적 물성특성)

  • Kim, S.K.;Lee, J.L.;Kang, K.H.;Yoon, K.H.;Song, J.;Park, I.J.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1584-1586
    • /
    • 2002
  • CuIn$Se_2$ (CIS) and related compounds such as Cu($In_xGa_{1-x})Se_2$(CIGS) have been studied by their potential for use in photovoltaic devices. CIS thin film materials which have high absorption coefficient and wide bandgap, have attracted much attention as an alternative to crystalline and amorphous silicon solar cells currently in use. Cu-rich CIGS film have very low resistivity, due to coexistence of the semimetallic $Cu_{2-x}Se$. In-rich CIGS films show high resistivity, since these films are compensated films without the $Cu_{2-x}Se$ phase. Optical properties of the CIGS films also change in accordance with the resistivity for the Cu/(In+Ga) ratio. The Cu-rich films have different spectra from In-rich films in near infrared wavelengths.

  • PDF

반응성 스퍼터링 후 열처리를 이용한 CIGS 박막의 조성비 변화에 따른 특성분석

  • Lee, Ho-Seop;Park, Rae-Man;Jang, Ho-Jeong;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.375-375
    • /
    • 2011
  • Cu(In1-xGax)Se2 (CIGS)박막증착법 중 금속 전구체의 셀렌화 공정법은 다른 제조 방법에 비해 대면적 생산에 유리하고, 비교적 공정 과정이 간단하다는 장점이 있다. 이 제조 방법은 금속 전구체를 만든 후에 셀렌화 공정을 하게 된다. 셀렌화 공정은 대부분 H2Se 가스를 사용하지만 유독성으로 사용하는데 주의해야 한다. 본 실험은 H2Se를 사용하지 않고 Se원료를 주입하기 위해 Se cracker를 사용했고 금속 전구체 증착과 셀렌화를 동시에 하는 반응성 스퍼터링 후 열처리 법을 이용하여 CIGS 박막을 증착 했다. CIGS의 박막의 Cu/[In+Ga], Ga/[In+Ga]비를 변화시켜 특성변화를 관찰했다. Cu/[In+Ga]비가 감소할수록 CIGS의 결정방향인 (112) 이 우세하게 발달했고 Ga/[In+Ga]비가 증가할수록 CIGS의 결정면 사이의 값이 작아지기 때문에 CIGS peak의 2-Theta 값이 증가하게 된다. CIGS 박막 태양전지의 구조는 Al/Ni/ITO/i-ZnO/CdS/CIGS/Mo/glass 제작했다. CIGS박막의 조성비가 Cu/[In+Ga]=0.84, Ga/[In+Ga]=0.24인 박막태양전지에서 개방전압 0.48 V, 단락전류밀도 33.54 mA/cm2, 충실도 54.20% 그리고 변환효율 8.63%를 얻었다.

  • PDF

Characterization of Cu(In1-x,Gax)Se2 Thin film Solar Cell by Changing Absorber Layer

  • ;Kim, Gi-Rim;Kim, Min-Yeong;Kim, Jong-Wan;Son, Gyeong-Tae;Im, Dong-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.314.2-314.2
    • /
    • 2013
  • CIGS 박막의 물성은 조성에 크게 영향을 받으며, 특히 박막 내 Cu/(In+Ga) 비는 매우 중요한 변수로서 태양전지 특성에 영향을 주게 된다. Cu(In1-xGax)Se2 박막의 전하농도 및 반도체로의 성격을 가장 명확하게 결정하는 조성비는 Cu/(In+Ga) 비이다. 태양전지와 같은 소자로 작용하기 위해서는 Cu/(In+Ga) 비가 1보다 작아야 한다. 고효율의 태양전지는 Cu/(In+Ga)조성이 0.85~0.95로 slightly Cu-poor가 되어야 만들어진다. 본 연구에서는 Cu조성에 따른 CIGS 박막의 구조적, 전기적 특성과 CIGS 태양전지 효율 특성에 관하여 연구하였다. 미세구조 분석결과 Cu 조성이 증가함에 따라 큰 결정립을 가지며 결정립의 성장이 고르게 되어 접합 형성을 좋게 하는 경향을 보였다. X선 회절 분석결과, Cu 함유량 비율이 증가하면서 <112>의 우선배향성에서 <220/204>으로 변화하였다. 그러나, Cu/(In+Ga) 비율이 1이상이 첨가됨에 따라 우선배향은 다시 <112>로 변화함을 알 수 있었다. EDX 분석결과 Ga/(In+Ga) 0.31, Cu/(In+Ga) 0.86의 비율일 때, Carrier density $1.49{\times}1016$ cm-3을 나타내었다. CIGS의 태양전지의 효율 측정결과 Voc=596mV, Jsc=37.84mA/cm2, FF=72.96%로 ${\eta}$=16.47%를 달성하였다.

  • PDF

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.