• Title/Summary/Keyword: $CuGaS_2$

Search Result 199, Processing Time 0.027 seconds

A Study on the Cu-based $I-III-VI_2$ Compound Thin Film Solar Cells (Cu계 $I-III-VI_2$ 화합물 박막 태양전지 연구)

  • Yun JaeHo;Ahn SeJin;Kim SeokKi;Lee JeongChul;Song Jinsoo;Ahn ByungTae;Yoon KyungHoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.109-112
    • /
    • 2005
  • Cu계$I-III-VI_2$화합물은 직접천이형 반도체로 광흡수계수가 매우 높아 박막형 태양전지 제조에 매우 유리하다 또한 화학적으로 안정하며 Ga, A1등을 첨가하면 에너지 금지대폭을 조절할 수 있어 Wide Bandgap 태양전지 및 탠덤구조 태양전지를 제조하기에도 용이하다. $CuInSe_2(CIS)$ 물질에서 In을 $20-30\%$ 정도 치환한 $Cu(In,\;Ga)Se_2(CIGS)$ 태양전지의 경우 $19.5\%$의 세계 최고 효율을 보고하고 있으며 이는 다결정 실리콘 태양전지의 효율과 비슷한 수준이다. 본 연구에서는 동시 진공증발법을 이용하여 증착한 CIGS 박막 및 $CuGaSe_2(CGS)$ 박막을 이용하여 태양전지를 제조하였다. 공정의 재현성 및 결정립계가 큰 광흡수층 제조를 위하여 실시간 기판 온도 모니터링 시스템을 도입하였으며 버퍼층으로는 용액성장한 CdS 박막을 사용하였다. SLG/MO/CIGS(CGS)/CdS/ZnO/Al구조의 태양전지를 제조하여 면적 $0.5cm^2$에서 각각 $15\%$(CIGS)와 $7\%(CGS)$의 효율을 얻었다.

  • PDF

Magnetic Propwrties of High Quality $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga) Melt-Spun Ribbons (고특성 $Nd_{12}Fe_{80}B_{6}(Nb, M)$ (M=Ti/Cu/Ga)급속응고리본의 자기특성)

  • 김윤배;김창석;김동환;이갑호;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.44-49
    • /
    • 1992
  • Magnetic properties and microstructures of $Nd_{12}Fe_{80}B_{6}(Nb,\;M)$ (M=Ti/Cu/Ga) melt-spun ribbons prepared by single wheel technique have been studied. The results of microstructural study have shown that Ga is effective for the orientation of c-axis normal to the ribbon plane. The Ga-added melt-spun ribbon, $Nd_{12}Fe_{80}B_{6}(Nb,\;Ga)$, quenched at $V_{s}=17.9\;m/s$ was mostly composed of fine grains of about 30 nm in size with the textured free-side surface. The powder of this ribbon aligned in mag-netic field showd a high remanence of 0.87 T which was about 5 % higher than that of ribbon itself. It is believed that there is a possibility to fabricate a new type of HIREM melt-spun ribbon with highly textured free-side surface.

  • PDF

Effect of Heat-Treatment in Se Atmosphere on the Densification of Absorber Layer Using $Cu(In,\;Ga)Se_2$ Nanoparticles ($Cu(In,\;Ga)Se_2$ 나노입자을 이용한 광흡수층 치밀화에 따른 Se 분위기의 열처리 효과)

  • Yoon, Kyung-Hoon;Kim, Ki-Hyun;Ahn, Se-Jin;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.210-213
    • /
    • 2006
  • 나노입자를 이용하여 치밀한 $Cu(In,\;Ga)Se_2$ 태양전지용 광흡수층을 제조하기 위해 먼저, 콜로이달 방법으로 합성된 20nm이하의 CIGS 나노입자를 저가의 스프레이 법을 이용하여 CIGS 막을 제조하였다. 제조된 CIGS막을 two-zone RTP (rapid temperature Process) 방법으로 Se 분위기 안에서 열처리를 행하였다. 입자의 치밀화를 위해 기판의 온도, Se 증발온도와 수송가스의 유량을 조절하여 CIGS 입자성장을 행하였다. 그러나, Se의 증발온도가 높을수록 CIGS와 MO 박막 사이에서 $MoSe_2$ 층이 형성되었다. 형성된 $MoSe_2$층의 부피 팽창으로 인해 하부의 유리기판과 Mo층 사이에서 peeling off 현상이 발생했다. 이러한 Peeling off현상을 억제하면서 CIGS 나노입자 성장을 하기 위해, Se 공급을 빨리 할 수 있도록 Se의 증기압을 높였으며, 최적조건에서 급속 열처리 공정을 통해 CIGS 나노입자 성장과 치밀화를 위한 소결거동을 관찰하였다.

  • PDF

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

Characteristics of $CU(InGa)Se_2$Thin Film Solar Cells with Deposition Condition of Mo Electrode (몰리브덴 전극의 형성조건에 따른 $CU(InGa)Se_2$ 박막 태양전지의 특성)

  • Kim, Seok-Gi;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.607-613
    • /
    • 2001
  • Molybdenum thin films were deposited on the soda lime glass(SLG) substrates by direct-current planar magnetron sputtering, with a sputtering power density of $4.44W/cm^2$. The working pressure was varied from 0.5 mtorr to 20 mtorr to gain a better understanding of the effect of sputtering pressure on the morphology and microstructure of the Mo film. Thin films of $CU(InGa)Se_2$ (CIGS) were deposited on the Mo-coated glass by three stage co-evaporation process. The highest efficiency device was obtained at the maximum value of the tensive stress. The morphology of Mo-coated films were examined by using scanning electron microscopy The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the residual intrinsic stress were examined by X-ray diffraction.

  • PDF

Effect of Pre/Post-Treatment on the Performance of Cu(In,Ga)(S,Se)2 Absorber Layer Manufactured in a Two-Step Process (KCN 에칭 및 CdS 후열처리가 Cu(In,Ga)(S,Se)2 광흡수층 성능에 미치는 영향)

  • Kim, A-Hyun;Lee, GyeongA;Jeon, Chan-Wook
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.36-45
    • /
    • 2021
  • To remove the Cu secondary phase remaining on the surface of a CIGSSe absorber layer manufactured by the two-step process, KCN etching was applied before depositing the CdS buffer layer. In addition, it was possible to increase the conversion efficiency by air annealing after forming the CdS buffer layer. In this study, various pre-treatment/post-treatment conditions wereapplied to the S-containing CIGSSe absorber layerbefore and after formation of the CdS buffer layer to experimentally confirm whether similareffects as those of Se-terminated CIGSe were exhibited. Contrary to expectations, it was noted that CdS air annealing had negative effects.

The study of growth and characterization of CuGaSe$_2$ single crystal thin films by hot wall epitaxy (HWE(Hot wall epitaxy)에 의한 CuGaSe$_2$단결정 박막 성장과 특성에 관한 연구)

  • 홍광준;백형원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.189-198
    • /
    • 2000
  • The stochiometric mixture of evaporating materials for the $CuGaSe_2$single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0}$ and $c_0$ were 5.615 $\AA$ and 11.025 $\AA$, respectively. To obtains the single crystal thin films, $CuGaSe_2$mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5$\mu\textrm{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30 K to 150 K and by polar optical scattering in the temperature range 150 K to 293 K. The optical energy gaps were found to be 1.68 eV for CuGaSe$_2$sing1e crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by $\alpha$ = $9.615{\times}10^{-4}$eV/K, and $\beta$ = 335 K. From the photocurrent spectra by illumination of polarized light of the $CuGaSe_2$single crystal thin films. We have found that values of spin orbit coupling $\Delta$So and crystal field splitting $\Delta$Cr was 0.0900 eV and 0.2498 eV, respectively. From the PL spectra at 20 K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626 eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352 eV, 0.0932 eV, respectively.

  • PDF

저가 범용 원소를 이용한 $Cu_2ZnSnS_4$ 화합물 박막 태양전지 기술 개발 동향

  • Kim, Jin-Hyeok;Kim, Jin-A;Yun, Jae-Ho;Sin, Seung-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.25-25
    • /
    • 2010
  • Cu(In, Ga)$Se_2$ (CIGS), $CuInS_2$ (CIS) 등의 Se, S계 화합물 박막 소재를 활용한 태양전지는 높은 광흡수 계수, 상대적으로 높은 효율, 화학적 안정성, 도시적인 미관 등으로 인하여 최근 부각되고 있다. 하지만 CIGS, CIS 등의 Se, S계 박막 소재는 상대적으로 매장량이 적은(희유 원소) In, Ga을 사용하고 있는 약점이 있으며 특히 In의 경우는 LCD Display에 사용되는 ITO 필름으로 인해 가격이 상승하고 있다. 따라서 결정질 실리콘 태양전지의 경험에서와 같이 생산량의 급증에서 기인하는 소재 부족 문제를 미연에 방지하고 안정적인 성장을 이루기 위해서는 희유 원소인 In과 Ga을 저가 범용원소로 대체 하는 기술을 추가적으로 개발해야 한다. $Cu_2ZnSnS_4$ (CZTS) 박막 태양전지는 Se, S계 태양전지에서 III 족 원소인 In, Ga을 II-IV 원소인 Zn와 Sn으로 대체하는 기술로 기존의 CIGS계 태양전지가 보유하고 있는 장점을 유지하면서 저가 태양전지를 구현할 수 있는 대체 물질로 최근 많은 관심을 받고 있다. CZTS 박막 태양전지 관련 세계 기술동향 조사에 따르면, 최근 2008년에 일본 Nagaoka 대학의 Katagiri 그룹에서 스퍼터를 이용하여 제조한 CZTS 박막 태양전지의 최고 효율이 6.77%가 됨을 보고하였고, 2010년 초에는 IBM에서 스핀코팅법을 이용하여 제조한 CZT(S, Se) 박막 태양전지의 효율을 9.66%까지 올릴 수 있음을 Advanced Materials에 보고하였다. 본 발표에서는 우선 CZTS 박막태양전지 제조 및 특성 분석 관련 개요 및 세계 기술 개발 동향 분석 결과를 설명할 것이다. 또한 본 실험실, 에너지 기술 연구원 및 KIST, 영남대 등 국내에서 진행되고 있는 CZTS 관련 기술 개발 현황에 대하여 설명할 것이다.

  • PDF

Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials (In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황)

  • Shin, Seung-Wook;Han, Jun-Hee;Gang, Myeng-Gil;Yun, Jae-Ho;Lee, Jeong-Yong;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

The Effect of Thermal Annealing and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막 성장과 열처리 효과)

  • 윤석진;정태수;이우선;박진성;신동찬;홍광준;이봉주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.871-880
    • /
    • 2003
  • Single crystal CuAlSe$_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410 C with hot wall epitaxy (HWE) system by evaporating CuAlSe$_2$ source at 680 C. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X -ray diffraction (DCXD). The carrier density and mobility of single crystal CuAlSe$_2$ thin films measured with Hall effect by van der Pauw method are 9.24${\times}$10$\^$16/ cm$\^$-3/ and 295 cm$^2$/V $.$ s at 293 K, respectively. The temperature dependence of the energy band gap of the CuAlSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 2.8382 eV - (8.86 ${\times}$ 10$\^$-4/ eV/K)T$^2$/(T + 155K). After the as-grown single crystal CuAlSe$_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal CuAlSe$_2$ thin films has been investigated by PL at 10 K. The native defects of V$\_$cd/, V$\_$se/, Cd$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal CuAlSe$_2$ thin films to an optical n-type. Also, we confirmed that Al in CuAlSe$_2$/GaAs did not form the native defects because Al in single crystal CuAlSe$_2$ thin films existed in the form of stable bonds.