• 제목/요약/키워드: $CuGaS_2$

검색결과 199건 처리시간 0.034초

$CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구 (A Study on th properties and Fabrication of $CuGaS_2$ Ternary Compound thin film)

  • 양현훈;정운조;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.279-280
    • /
    • 2008
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to 150$[^{\circ}C]$ at intervals of 50$[^{\circ}C]$. As a result, at 400$[^{\circ}C]$ of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

열처리된 CuGaSe2 단결정 박막의 점결함연구 (A study on point defect for thermal annealed CuGaSe2 single crystal thin film)

  • 이상열;홍광준
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.154-154
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for CuGaSe2 single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe2, it was found tetragonal structure whose lattice constant at and co were 5.615 ${\AA}$ and 11.025 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaSe2 mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (MWE) system. The source and substrate temperatures were Slot and 450$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (UXD). The carrier density and mobility of CuGaSe2 single crystal thin films measured with Hall effect by van der Pauw method are 5.0l${\times}$10$\^$17/ cm$\^$-3/ and 245 $\textrm{cm}^2$/V$.$s at 293K, respectively. The temperature dependence of the energy band gap of the CuGaSe2 obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 1.7998 eV - (8.7489${\times}$10$\^$-4/ eV/K)T$^2$/(T + 335 K. After the as-grown CuGaSe2 single crystal thin films was annealed in Cu-, Se-, and Ca-atmospheres, the origin of point defects of CuGaSe2 single crystal thin films has been investigated by the photoluminescence(PL) at 10 K The native defects of V$\_$CU/, V$\_$Se/, Cu$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted CuGaSe2 single crystal thin films to an optical n-type. Also, we confirmed that Ga in CuGaSe2/GaAs did not form the native defects because Ga in CuGaSe2 single crystal thin films existed in the form of stable bonds.

  • PDF

Sulfurization 온도와 Cu/(In+Ga) 비가 Cu(In,Ga)Se2 박막 내 S 함량에 미치는 영향 (Effects of sulfurization temperature and Cu/(In+Ga) ratio on Sulfur content in Cu(In,Ga)Se2 thin films)

  • 고영민;김지혜;신영민;;안병태
    • Current Photovoltaic Research
    • /
    • 제3권1호
    • /
    • pp.27-31
    • /
    • 2015
  • It is known that sulfide at the $Cu(In,Ga)Se_2$ ($CIGSe_2$) surface plays a positive role in $CIGSe_2$ solar cells. We investigated the substitution of S with Se on the $CIGSe_2$ surface in S atmosphere. We observed that the sulfur content in the $CIGSe_2$ films changed according to sulfurization temperature and Cu/(In+Ga) ratio. The sulfur content in the $CIGSe_2$ films increased with increasing the annealing temperature and Cu/(In+Ga) ratio. Also Cu migration toward the surface increased at higher temperature. Since high Cu concentration at the $CIGSe_2$ surface is detrimental role, it is necessary to reduce the S annealing temperature as low as $200^{\circ}C$. The cell performance was improved at $200^{\circ}C$ sulfurization.

Fabrication of wide-bandgap β-Cu(In,Ga)3Se5 thin films and their application to solar cells

  • Kim, Ji Hye;Shin, Young Min;Kim, Seung Tae;Kwon, HyukSang;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.38-43
    • /
    • 2013
  • $Cu(In,Ga)_3Se_5$ is a candidate material for the top cell of $Cu(In,Ga)Se_2$ tandem cells. This phase is often found at the surface of the $Cu(In,Ga)Se_2$ film during $Cu(In,Ga)Se_2$ cell fabrication, and plays a positive role in $Cu(In,Ga)Se_2$ cell performance. However, the exact properties of the $Cu(In,Ga)_3Se_5$ film have not been extensively studied yet. In this work, $Cu(In,Ga)_3Se_5$ films were fabricated on Mo-coated soda-lime glass substrates by a three-stage co-evaporation process. The Cu content in the film was controlled by varying the deposition time of each stage. X-ray diffraction and Raman spectroscopy analyses showed that, even though the stoichiometric Cu/(In+Ga) ratio is 0.25, $Cu(In,Ga)_3Se_5$ is easily formed in a wide range of Cu content as long as the Cu/(In+Ga) ratio is held below 0.5. The optical band gap of $Cu_{0.3}(In_{0.65}Ga_{0.35})_3Se_5$ composition was found to be 1.35eV. As the Cu/(In+Ga) ratio was decreased further below 0.5, the grain size became smaller and the band gap increased. Unlike the $Cu(In,Ga)Se_2$ solar cell, an external supply of Na with $Na_2S$ deposition further increased the cell efficiency of the $Cu(In,Ga)_3Se_5$ solar cell, indicating that more Na is necessary, in addition to the Na supply from the soda lime glass, to suppress deep level defects in the $Cu(In,Ga)_3Se_5$ film. The cell efficiency of $CdS/Cu(In,Ga)_3Se_5$ was improved from 8.8 to 11.2% by incorporating Na with $Na_2S$ deposition on the CIGS film. The fill factor was significantly improved by the Na incorporation, due to a decrease of deep-level defects.

n-type $CuGaS_2$ 3원 화합물 박막의 제작과 분석에 관한 연구 (A Study on the properties and Fabrication of n-type $CuGaS_2$ Ternary Compound thin film)

  • 양현훈;백수웅;나길주;소순열;박계춘;이진;정해덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.467-468
    • /
    • 2009
  • For the manufacture of the $CuGaS_2$, Cu, Ga and S were vapor-deposited in the named order. Among them, Cu and Ga were vapor-deposited by using the Evaporation method in consideration of their adhesive force to the substrate so that the composition of Cu and Ga might be 1 : 1, while the surface temperature having an effect on the quality of the thin film was changed from R.T.[$^{\circ}C$] to $150[^{\circ}C$] at intervals of 50[$^{\circ}C$]. As a result, at 300[$^{\circ}C$]of the Annealing temperature, their chemical composition was measured in the proportion of 1 : 1 : 2. It could be known from this experimental result that it is the optimum condition to conduct Annealing on the $CuGaS_2$ thin film under a vacuum when the $CuGaS_2$ thin film as an optical absorption layer material for a solar cell is manufactured.

  • PDF

$CuGaS_2$ 반도체 박막의 구조적 및 전기적 특성 (Structural and Electrical Properties of $CuGaS_2$ Thin Films)

  • 박계춘;정해덕;이진;정운조;김종욱;조영대;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.286-289
    • /
    • 2001
  • Single phase CuGaS$_2$ thin film with the highest diffraction peak of (112) at diffraction angle (2$\theta$) of 28.8$^{\circ}$ was made at substrate temperature of 7$0^{\circ}C$, annealing temperature of 35$0^{\circ}C$ and annealing time of 60 min. And second highest (204) peak was shown at diffraction angle (2$\theta$) of 49.1$^{\circ}$. Lattice constant of a and c of that CuGaS$_2$ thin film was 5.37 $\AA$ and 10.54 $\AA$ respectively. The greatest grain size of the thin film was about 1${\mu}{\textrm}{m}$. The (112) peak of single phase of CuGaS$_2$ thin film at annealing temperature of 35$0^{\circ}C$ with excess S supply was appeared with a little higher about 10 % than that of no exces S supply And the resistivity, mobility and hole density at room temperature of p-type CuGaS$_2$ thin film with best crystalline was 1.4 $\Omega$cm, 15 cm2/V . sec and 2.9$\times$10$^{17}$ cm$^{-3}$ respectively. It was known that carrier concentration had considerable effect than mobility on variety of resistivity of the fabricated CuGaS$_2$ thin film, and the polycrystalline CuGaS$_2$ thin films were made at these conditions were all p-type.

  • PDF

용액 공정으로 만든 Cu(In,Ga)S2 박막태양전지의 전기적 특성 (Electrical Characteristics of Solution-processed Cu(In,Ga)S2 Thin Film Solar Cells)

  • 김지은;민병권;김동욱
    • Current Photovoltaic Research
    • /
    • 제2권2호
    • /
    • pp.69-72
    • /
    • 2014
  • We investigated current-voltage (I-V) and capacitance (C)-V characteristics of solution-processed thin film solar cells, consisting of $Cu(In,Ga)S_2$ and $CuInS_2$ stacked absorber layers. The ideality factors, extracted from the temperature-dependent I-V curves, showed that the tunneling-mediated interface recombination was dominant in the cells. Rapid increase of both series- and shunt-resistance at low temperatures would limit the performance of the cells, requiring further optimization. The C-V data revealed that the carrier concentration of the $CuInS_2$ layer was about 10 times larger than that of the $Cu(In,Ga)S_2$ layer. All these results could help us to find strategies to improve the efficiency of the solution-processed thin film solar cells.

태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과 (The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application)

  • 홍광준;유상하
    • 한국태양에너지학회 논문집
    • /
    • 제23권2호
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Hot Wall Epitaxy(HWE)법으로 성장된 CuGaSe$_2$ 단결정 박막 성장의 열처리 효과 (The Effect of Thermal Annealing for CuGaSe$_2$ Single Crystal Thin Film Grown by Hot Wall Epitaxy)

  • 박창선;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.352-356
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal am films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615\;{\AA}\;and\;11.025\;{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively, The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;:\;1.7998\;eV\;-\;(8.7489\;{\times}\;10^{-4}\;eV/K)T^2(T\;+\;335\;K)$. After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU}$, $V_{Se}$, $CU_{int}$, and $Se_{int}$, obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2/GaAs$ did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

태양 전지용 $CuGaSe_2$ 단결정 박막 성장과 태양전지로의 응용 (Growth of $CuGaSe_2$ single crystal thin film for solar cell development and its solar cell application)

  • 윤석진;홍광준
    • 한국결정성장학회지
    • /
    • 제15권6호
    • /
    • pp.252-259
    • /
    • 2005
  • [ $CuGaSe_2$ ] 단결정 박막은 수평 전기로에서 합성한 $CuGaSe_2$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성 GaAs(100))의 온도를 각각 $610^{\circ}C,\;450^{\circ}C$로 고정하여 단결정 박막을 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼(PL)과 이중결정 X-선 요동곡선 (DCRC)으로부터 구하였다. Hall 효과는 Van der Pauw 방법에 의해 측정되었으며, 293 K에서 운반자 농도와 이동도는 각각 $4.87{\times}10^{17}/cm^3,\;129cm^2/V{\cdot}s$였다. $n-Cds/p-CuGaSe_2$ 합 태양전지에 $80mW/cm^2$의 광을 조사시켜 최대 출력점에서 전압은 0.41 V, 전류밀도는 $21.8mA/cm^2$였고, fill factor는 0.75 그리고 태양전지 전력변환 효율은 11.17% 였다.