• 제목/요약/키워드: $Cu^{2+}$ toxicity

검색결과 125건 처리시간 0.023초

EFFECT OF MULTILAYER COATING ON THE CORROSION RESISTANCE OF SINTERED STAINLESS STEELS

  • Choe, Han-Cheol;Ko, Yeong-Mu
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2003년도 추계학술발표회초록집
    • /
    • pp.136-137
    • /
    • 2003
  • In this study, in order to fabricate sintered dental implant, the effects of HA, Ti and TiN on corrosion and biocompatibility, cell toxicity, osseointegration of electroless Cu-plated and sintered stainless steel implant were investigated using various characteristics. The effects of Ti/TiN/HA coating on the interface activation and surface characteristics of sintered stainless steels(SSS) by electron-beam physical vapor deposition(EB-PVD) method have been studied. Stainless steel compacts containing 2, 4, and 10 wt%Cu were prepared by electroless Cu-plating method which results in the increased homogenization in alloying powder. The specimens were coated with HA, Ti and TiN with few $\mu\textrm{m}$ thickness respectively by EB-PVD method. The microstructures and phase analysis were conducted by using SEM. Biocompatibility were investigated in experimental dog. The corrosion behaviors were investigated using potentiosat in 0.9% NaCl solution and corrosion surface was observed using SEM and XPS.

  • PDF

Assessing Metallic Toxicity of Wastewater for Irrigation in Some Industrial Areas of Bangladesh

  • Rahman, Md. Mokhlesur;Jiku, Md. Abu Sayem;Kim, Jang-Eok
    • 한국환경농학회지
    • /
    • 제30권2호
    • /
    • pp.189-195
    • /
    • 2011
  • BACKGROUND: Wastewaters were collected from 25 sites of two industrial areas of Mymensingh and Gazipur in Bangladesh to assess metallic toxicity of wastewater for irrigation usage. METHODS AND RESULTS: The analyzed wastewaters were slightly alkaline to alkaline in nature and were problematic for irrigation except 3 samples. As per TDS values, 9 samples were rated as fresh water and the rest 16 were classified as brackish water. EC and SAR reflected that all samples were medium salinity (C2), high salinity (C3), very high salinity (C4) and low alkalinity (S1) hazard classes expressed as C2S1, C3S1 and C4S1. Wastewaters of different industries were graded as excellent, good, permissible and doubtful for irrigation purpose as per SSP. According to hardness ($H_T$), wastewater were under moderately hard, hard and very hard classes. Cd, Cr and Cu ions were treated as toxicant for irrigating soils and crops. Zn was problematic for long-term irrigation. The concentrations of Pb, Fe and Na were far below the toxic levels. Synergistic relationships were observed between pH-EC, pH-TDS, EC-TDS, SAR-SSP and SSP-hardness. CONCLUSION(s): If wastewater is applied for irrigation due to the fresh water shortage, it can contaminate soil due to some toxic metal ions.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.

Exploration of Metallic Contamination in Fish Species of the Polluted Rivers in Bangladesh

  • Rahman, Mokhlesur;Jiku, Abu Sayem;Alim, Abdul;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.131-136
    • /
    • 2014
  • An attempt was made to assess metal ionic toxicity levels of different fishes in the polluted rivers viz., Buriganga and Turag. Fish samples collected from two polluted rivers were analyzed for the levels of metals such as Cd, Cr, Cu, Mn, Pb, and Zn in order to elucidate the status of these contaminants in fish meant for human consumption. The detected concentrations of Cr, Cu, Mn, and Zn ions in fish species collected from the polluted rivers were below the toxic levels and did not appear to pose a threat. Among the analyzed metals, Cd and Pb ions were detected above the permissible levels in liver and muscle tissues of stinging catfish (Heteropneustesfossilis), spotted snakehead (Channapunctata) and wallago (Wallagoattu) collected from the polluted rivers causing toxicity for human consumption. Stinging catfish (Heteropneustesfossilis) was the species found to highly bioaccumulate these metals. Fish species bioconcentrated appreciable amounts of Cd and Pb as toxic metals in the liver as compared to the muscle. Levels of these toxic metals varied depending on different tissues in fish species.

스퍼터링 공정 조건이 산화 구리 박막 특성에 미치는 영향 (Influence of Sputtering Conditions on Properties of Copper Oxide Thin Films)

  • 조재유;허재영
    • Current Photovoltaic Research
    • /
    • 제5권1호
    • /
    • pp.15-19
    • /
    • 2017
  • The fossil fuel power consumption generates $CO_2$, which causes the problems such as global warming. Also, the increase in energy consumption has accelerated the depletion of the fossil fuels, and renewable energy is attracting attention. Among the renewable energies, the solar energy gets a lot of attention as the infinite clean energy source. But, the supply level of solar cell is insignificant due to high cost of generation of electric power in comparison with fossil fuels. Thus several researchers are recently doing the research on ultra-low-cost solar cells. Also, $Cu_2O$ is one of the applied materials as an absorption layer in ultra-low-cost solar cells. Cuprous oxide ($Cu_2O$) is highly desirable semiconductor oxide for use in solar energy conversion due to its direct band gap ($E_g={\sim}2.1eV$) and a high absorption coefficient that absorbs visible light of wavelengths up to 650 nm. In addition, $Cu_2O$ has several advantages such as non-toxicity, low cost and can be prepared with simple and cheap methods on large scale. In this work, we fabricated the $Cu_2O$ thin films by reactive sputtering method. The films were deposited with a Cu target with variable parameters such as substrate temperature, rf-power, and annealing condition. Finally, we confirmed the structural properties of thin films by XRD and SEM.

Acute Toxicity of Heavy Metals, Tributyltin, Ammonia and Polycyclic Aromatic Hydrocarbons to Benthic Amphipod Grandidierella japonica

  • Lee, Jung-Suk;Lee, Kyu-Tae;Park, Gyung-Soo
    • Ocean Science Journal
    • /
    • 제40권2호
    • /
    • pp.61-66
    • /
    • 2005
  • Benthic amphipod, Grandidierella japonica widely inhabits the Korean coastal waters and is developed as a standard test species for sediment toxicity tests. We exposed G. japonica to various pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), tributyltin [TBT], ammonia and 7 polycyclic aromatic hydrocarbon (PAH) compounds (acenaphthene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene and pyrene) to estimate the no observed effect concentration (NOEC) and the median lethal concentration (LC50) of each pollutant during the 96-hour acute exposure. Among all tested pollutants, TBT was most toxic to G. japonica, and Rg was most toxic among inorganic metals. The toxicity of pyrene to G. japonica was greatest among PAH compounds, followed by fluoranthene, phenanathrene, acenaphthene, fluorene and naphthalene. The toxicity of PAH compounds was closely related to their physico-chemical characteristics such as $K_ow$ and water solubility. G. japonica responded adequately to pollutant concentrations and exposure durations, and the sensitivity of G. japonica to various inorganic and organic pollutants was generally comparable to other amphipods used as standard test species in ecotoxicological studies, indicating this species can be applied in the assessment of environments polluted by various harmful substances.

Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가 (Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis)

  • 이정아;박다경
    • 환경생물
    • /
    • 제34권2호
    • /
    • pp.116-123
    • /
    • 2016
  • 본 연구에서는 경기도 안산 도금폐수 처리시설에서 총 4개 시료를 대상으로 국내 생태독성시험 표준 생물 종인 D. magna와 국내서식 종 E. agilis를 이용한 생태독성을 수행하였다. 시료에 대한 독성원인물질 탐색은 D. magna 급성 독성시험법을 이용하여 1) 시료 내 개별 중금속 농도와 시료의 독성영향과의 상관분석, 2) 원인물질탐색 실험 (단계적 pH, SS, 중금속, 산화제 Test), 3) 중금속 목적물질에 대한 독성영향 농도와 시료 내 목적물질의 농도와의 비교 등을 통해 평가하였다. 도금폐수 시료에 대한 E. agilis 시험법의 적용 가능성 평가는 E. agilis 실시간 생태독성 모니터링장비(E-Tox 시스템)를 이용하여 수행하였다. D. magna 시험 결과, 시료의 독성원인물질군은 부유물질 (SS), 산화제 그리고 중금속으로 예측되었으며 개별 중금속 원인물질은 Cu, Hg, Ag로 판단되었다. E. agilis는 D. magna에 비해 독성 민감도는 높지 않으나 D. magna에 독성영향을 나타내는 도금폐수시료에 신속하고 민감하게 반응하였다. 본 연구의 결과 D. magna를 이용한 단계별 독성원인물질 탐색평가과정은 생태독성기준을 초과하는 도금폐수 시료에 대한 독성 원인물질을 파악하는데 효과적으로 나타났다. 또한 E-agilis 시험은 향후 도금폐수의 수질을 실시간으로 모니터링 하는데 적용 가능 할 것으로 판단된다.

파래의 포자형성률을 이용한 해양생태독성시험 방법에 관한 연구 (Development of Marine Ecotoxicological Standard Methods for Ulva Sporulation Test)

  • 한태준;한영석;박경수;이승민
    • 한국해양학회지:바다
    • /
    • 제13권2호
    • /
    • pp.121-128
    • /
    • 2008
  • 해조류를 이용한 수생태독성시험법으로 대형 녹조 구멍갈파래(Ulva pertusa)의 포자형성률을 endpoint로 사용하는 독성시험법이 개발되었다. 생태독성시험을 위한 최적 조건은 광조사량 $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 수소이온농도(pH) $7{\sim}9$, 염분 $25{\sim}35\;psu$ 그리고 수온 $15{\sim}20^{\circ}C$이다. 본 시험법의 민감도는 표준중금속(Cd, Cu, Pb, Zn)을 가지고 확인하였고, 오염 시료에 적용 가능성은 9 지역의 산업폐수 또는 생활하수 오니 용출액(elutriate)을 이용하여 이루어졌다. 네 종의 중금속에 대한 포자형성률 억제 반응의 $EC_{50}$ 값을 산출한 결과, 구리($0.062\;{mg}{\cdot}L^{-1}$) > 카드뮴($0.208\;mg{\cdot}L^{-1}$) >납($0.718\;mg{\cdot}L^{-1}$) > 아연($0.776\;mg{\cdot}L^{-1}$) 순으로 민감하게 나타났는데, 이러한 결과는 US EPA에서 제공하는 ECOTOX DB에 탑재되어 있는 국제적으로 공인된 수생태 독성시험법 결과와 비교해 볼 때, 더 높은 중금속 민감성을 보였다. 현장시료에 대한 포자형성률 억제 반응의 $EC_{50}$ 값을 살펴보면 산업폐수오니($EC_{50}=6.78%$)에서 가장 높고 정수장오니($EC_{50}=15.00%$)에서 가장 낮은 독성 반응을 보이는 것으로 나타났다. 산업폐수 또는 생활하수오니 용출액내에 함유된 독성원 농도와 산출된 $EC_{50}$ 값 사이에 상관성을 밝히기 위해 Spearman rank correlation test를 실시한 결과, 구리, 카드뮴, 납 그리고 아연이 구멍갈파래의 포자형성 저해 반응과 밀접한 상관관계가 있는 것으로 확인되었다. 본 시험법은 독성 민감성이 높고, 사용이 간편하고, 경제적이고, 해석이 용이하며, 대량의 시험재료 확보가 상시 가능하고, 배양이 어렵지 않아 매우 편리한 시스템이라고 할 수 있다. 특히, 파래의 포자형성 과정이 파래 집단의 성쇠와 밀접한 관련이 있으므로 생태적인 의미까지 포함하기에 보다 다양한 독성물질을 대상으로 독성민감성이 확인될 경우, 수서 생태독성을 진단하는데 유용한 프로토콜로 사용될 수 있을 것으로 사료된다. 또한, 파래류는 넓은 지리적 분포와 속 수준에서 포자형성 과정의 유사성 때문에 전 세계적으로 광역적 적용이 가능할 것으로 기대된다.

Histopathology and residues in fresh water fish exposed to acute and chronic copper and mercury toxicity

  • Sawsan, H.A.;Amira, H.M.;Mostafa, M.B.;Nashaat, AM.M.
    • 한국어병학회지
    • /
    • 제30권2호
    • /
    • pp.115-134
    • /
    • 2017
  • A total number of 668 apparently healthy fish were obtained from farm to study the effect of two heavy metals (Copper and Mercury) on histopathology of liver, kidney, spleen, gills and muscles also residues in muscles. The $LC_{50}$/96 hr. of Cu and Hg were estimated and fish exposed to 1/2 $LC_{50}$ for 7 days and for 1/10 $LC_{50}$ for 8 weeks from each product separately. Histopathological findings in acute and chronic mercuric chloride toxicity revealed degeneration and necrosis in the glomeruli, interstitium tissue and epithelium lining renal tubules. The tubular epithelium became necrotic at several places. Eosinophilic hyaline droplets is exist in the cytoplasm of the necrosed cells. Degenerative changes and hyperactivity in melanomachrophage center was seen in the spleen together with some necrotic areas. Necrosis and aggregation of melanomachrophage were seen in the hepatic cells, Hepatic cells showed vacuolar degeneration in the hepatic cells. Gills showed loss in the lamellae of the filaments associated with edema, inflammatory cells infiltration and haemorrhages in the arch. The sarcoplasm of the bundles of the skeletal muscle showed granular degeneration and focal inflammatory cells infiltration between the hyalinized bundles. Mercury residues obtained from these studies in the acute toxicity were 0.22 ppm/gm in the 2nd day, 0.411 ppm/gm in the $5^{th}$ day ended with 0.96 ppm/gm in the $7^{th}$ day. In chronic toxicity it was 1.1320, 1.7140, 2.3620 and 3.5640 ppm/gm respectively from the $2^{nd}$ to the $8^{th}$ week of exposure. In acute and chronic copper toxicity, there was degenerative changes in renal tubules. Melanophores aggregation in the wall of the blood vessels of the spleen and depletion of some of the melanophores in the melanomachrophage were seen together with necrosis in some areas. Congested Mvs (Micro vessels) and vacuolation of hepatocytes were observed. Some areas of hemorrhage and melanophores vacuolar degeneration in the liver were seen. There was mitosis in some areas with displesia of hepatopancreatic cells and eosinophilic granular cells aggregation. Zymogen granules disappeared and there were dyplastic hepatocytes. Congestion in the blood vessels of the gill filaments, associated with massive number of granular eosinophilic cells infiltration were seen in the base of the filaments. There were sever vacuolization and hyalinization in the skeletal muscle bundles. Detection of residues of copper sulfate revealed increase of the amount of copper measured in ppm/gm comparing to the normal control starting from 0.60 ppm/g in the $2^{nd}$ day, 0.67 ppm/g in the $5^{th}$ day and 0.67 ppm/g in the $7^{th}$ day. Result obtained in chronic copper sulfate toxicity revealed gradual increase of the amount of copper which ranged from 0.18 ppm/g at the $2^{nd}$ week to 0.21 ppm/g in the $8^{th}$ week of exposure.

Molecular and Morphological Evidence of Hepatotoxicity after Silver Nanoparticle Exposure: A Systematic Review, In Silico, and Ultrastructure Investigation

  • Sooklert, Kanidta;Wongjarupong, Asarn;Cherdchom, Sarocha;Wongjarupong, Nicha;Jindatip, Depicha;Phungnoi, Yupa;Rojanathanes, Rojrit;Sereemaspun, Amornpun
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.257-270
    • /
    • 2019
  • Silver nanoparticles (AgNPs) have been widely used in a variety of applications in innovative development; consequently, people are more exposed to this particle. Growing concern about toxicity from AgNP exposure has attracted greater attention, while questions about nanosilver-responsive genes and consequences for human health remain unanswered. By considering early detection and prevention of nanotoxicology at the genetic level, this study aimed to identify 1) changes in gene expression levels that could be potential indicators for AgNP toxicity and 2) morphological phenotypes correlating to toxicity of HepG2 cells. To detect possible nanosilver-responsive genes in xenogenic targeted organs, a comprehensive systematic literature review of changes in gene expression in HepG2 cells after AgNP exposure and in silico method, connection up- and down-regulation expression analysis of microarrays (CU-DREAM), were performed. In addition, cells were extracted and processed for transmission electron microscopy to examine ultrastructural alterations. From the Gene Expression Omnibus (GEO) Series database, we selected genes that were up- and down-regulated in AgNPs, but not up- and down-regulated in silver ion exposed cells, as nanosilver-responsive genes. HepG2 cells in the AgNP-treated group showed distinct ultrastructural alterations. Our results suggested potential representative gene data after AgNPs exposure provide insight into assessment and prediction of toxicity from nanosilver exposure.