• Title/Summary/Keyword: $Cr_{23}C_6$

Search Result 175, Processing Time 0.025 seconds

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

Effect of Peak Temperature on the Grain Growth in Simulated HAZ of Cr-Mo-V Steel(T24) (Cr-Mo-V강(T24)의 재현 HAZ의 결정립 성장에 미치는 피크온도의 영향)

  • Lee, Kyong-woon;Lee, Seong-hyeong;Na, Hye-sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2016
  • Recently developed ferritic heat resistance steel, T24 was used to evaluate microstructure characteristics of simulated heat affected zone. Also, correlation between the prior austenite grain size and amount of $M_{23}C_6$ carbide dissolution was discussed. With the increasing of peak temperature, Grain size steadily increased up to $1050^{\circ}C$ and then rapidly increased at $1150^{\circ}C$. Of the peak temperature $950{\sim}1050^{\circ}C$, amounts of $M_{23}C_6$carbide dissolution are low. But Most of $M_{23}C_6$ carbide that is inhibited grain growth were dissolved above $1050^{\circ}C$ and decreased volume fraction of carbide. This indicates that grain growth may be achieved through dissolution of carbide in the base material. As of welding, due to very rapid heating rate, $M_{23}C_6$ carbide exists above equilibrium solution temperature that is $800^{\circ}C$, even at $1050^{\circ}C$. So, It was confirmed that close correlation between carbide dissolution in the base material and grain growth. Calculated grain size has a linear relationship with peak temperature, on the other hand, measured grain size discontinuously increased between $950{\sim}1050^{\circ}C$ and above $1050^{\circ}C$. Grain size of heat affected zone at $1350^{\circ}C$ peak temperature showed maximum 67um and minimum 4um. Also, The number of side showed 3 to 10.

Creep Rupture Due to Molybdenum Rich $M_6C$ Carbide in 1.0Cr-1.0Mo-0.25V Steel Weldment (1.0Cr-1.0Mo-0.25V강 용접부의 $M_6C$ 탄화물에 의한 크립 파단)

  • O, Yeong-Geun;Kim, Byeong-Cheol;Gang, Gye-Myeong;Min, Tae-Guk
    • Korean Journal of Materials Research
    • /
    • v.6 no.12
    • /
    • pp.1257-1262
    • /
    • 1996
  • 1.0Cr-1.0Mo-0.25V강 용접부의 크립 파단 시험시 파단 발생 원인에 관한 연구가 시행되었다. 파괴는 Intercritical Heat Affected Zone에서 발생하였으며 파단면에서 구상의조대한 M6C탄화물이 발견되었다. 모재는 molybdenum 주성분의 M2C, vanadium 주성분의 M4C3 및 chromium 주성분의 M23C6와 M7C3 탄화물이 존재하였다. 모의 실험 결과 준안정 상태인 M2C 탄화물은 85$0^{\circ}C$, 10oh에서 안정한 M6C탄화물로 변태하였다. M6C 탄화물은 주변의 molybdenum 농도를 떨어뜨려 강도의 저하를 가져오며 크립 기공의 발생 원인을 제공하였다.

  • PDF

A study on the carburization of Fe-Cr alloys. (Fe-Cr합금의 침탄에 관한 연구)

  • 박병옥;윤병하
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 1989
  • The properties of carburization on Fe-Cr alloys at 900-96$0^{\circ}C$were investiged. The study on carbide layer which had developed during solid-carburizing was made by use of S.E.M, E.PM.A, and X-ray analyzer. The results obtained were summarized as follows, the composition of carbide and the value of activation energy for the growth of carbide layer on each Fe-Cr alloy were 1) Fe-1Cr : M3C and 52Kcal/mole 2) Fe-3Cr and Fe-5Cr : M7C3and 85-88Kcal/mole 3) Fe-7Cr and Fe-9Cr : (M7C3+M23C6)and 55-66Kcal/mole.

  • PDF

High-temperature Oxidation Kinetics and Scales Formed on Fe-2.3%Cr-1.6%W Alloy (Fe-2.3%Cr-1.6%W 합금의 고온산화 부식속도와 스케일 분석)

  • Bak, Sang-Hwan;Kim, Min-Jung;Lee, Jae-Ho;Bong, Sung-June;Kim, Seul-Ki;Lee, Dong-Bok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The T23 steel, whose composition was Fe-2.3%Cr-1.6%W, was arc-melted, and oxidized between $600^{\circ}C$ and $900^{\circ}C$ in air for up to 7 months. The amount of precipitates in the arc-melted microstructure was as large as 11.4 vol.%. The precipitates increased the oxidation rate of the arc-melted T23 steel. Owing to the low amount of Cr in the T23 steel, breakaway oxidation occurred after a few hours during oxidation above $700^{\circ}C$ in both arc-melted and as-received T23 steels. The scales that formed on arc-melted and as-received T23 steels were similar to each other. They consisted primarily of the outer $Fe_2O_3$ layer and the inner ($Fe_2O_3$, $FeCr_2O_4$)-mixed layer. The precipitates increased the microhardness and the oxidation rates.

Effect of Mo addition on the Creep Properties of 9Cr-3W Steel (9Cr-3W 강의 크리프 특성에 미치는 Mo 첨가의 영향)

  • Kim, Yong-Rai;Jang, Jinsung;Kim, Tae-Kyu
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • The effect of the Mo addition on the high temperature creep properties of the 9Cr-3W steel was also evaluated. Two experimental steels, (9Cr-3W and 9Cr-3W-0.5Mo), were prepared using a vacuum induction melting process, followed by hot rolling and heat treatment processes. Three types of precipitates, ($M_{23}C_6$, Nb-rich MX and V-rich MX) were observed in a typical tempered martensitic matrix. Significant effects of the Mo addition on the tensile properties were not observed. However, the creep properties at $650^{\circ}C$ under applied stresses of 140 and 150 MPa were considerably enhanced by the Mo addition. The microstructural observation after the creep test indicated that the addition of Mo could function to retain the recovery of the martensitic matrix, thus resulting in the enhanced creep properties of the 9Cr-3W-0.5Mo steel. Furthermore coarsening of the $M_{23}C_6$ carbides and formation of Laves phases were observed in both samples after the creep tests.

Closed field unbalanced magnetron sputtering system을 이용하여 증착한 CrZr-Si-N 박막의 고온 안정성과 내 마모 특성 연구

  • O, Seung-Cheon;Kim, Gwang-Seok;Kim, Beom-Seok;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.61-62
    • /
    • 2008
  • Closed field unbalanced magnetron sputtering 방법을 이용하여 CrZr-Si-N 박막을 증착하였다. Si Target power의 변화에 따라 박막을 증착하여 XRD, SEM, XPS, GDOES, AFM, XPS, Nanoindentation을 이용하여 박막의 미세구조, 성분분석, 표면 조도, 경도를 측정하였다. $500^{\circ}C$에서 annealing한 후 상온에서의 박막의 경도와 비교하였고, 상온과 $500^{\circ}C$에서 마모 실험을 행한 후 마찰 계수를 측정하여 비교하였다. $Cr_{39.4}Zr_{12.3}N_{48.3}$ 박막은 $500^{\circ}C$ annealing 후 경도는 30 GPa에서 24 GPa로 감소하였고 마찰계수는 0.23에서 0.81로 약 4배 증가하였다. $500^{\circ}C$ annealing 후 $Cr_{34.6}Zr_{10.6}-Si_{6.4}-N_{48.4}$ 박막의 경도는 30 GPa로 상온에서의 경도 32 GPa과 비슷하였고 $500^{\circ}C$와 상온에서 수행된 마모시험 결과는 $500^{\circ}C$에서 마찰계수 0.43으로 상온 마모시험 결과와 거의 비슷한 결과를 보였다. 상온의 경우 Si 함량에 따른 기계적 특성 및 마모특성의 변화는 거의 없었다. 그러나 $500^{\circ}C$ annealing 후 CrZi-Si-N 박막의 기계적 특성 및 마모특성은 Si 함량에 따라 큰 차이를 나타내었다. 이러한 결과들을 통해 Si 첨가가 CrZrN 박막의 고온 안정성 향상에 기여함을 확인할 수 있었다.

  • PDF

Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel (크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성)

  • Kim, Chung-Seok;Kwun, S.I.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.417-425
    • /
    • 2007
  • The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.

Effect of Al Content Variation on High Temperature Gas Nitriding in 13%Cr-0.16%C Stainless Steel (13%Cr-0.17%C 스테인리스강의 고온 가스질화에 미치는 Al 함량 변화의 영향)

  • Park, B.T.;Kim, J.M.;Kang, H.J.;Kong, J.H.;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.318-326
    • /
    • 2011
  • This study has been performed to investigate the effect of Al addition on High Temperature Gas Nitriding (HTGN) in 13%Cr-0.16%C stainless steel with different Al contents of 0.54%, 1.76% and 2.36%, respectively. HTGN treatment was carried out at $1100^{\circ}C$ for 1 hr, 5 hrs and 10 hrs. Nitrogen-permeated surface layers showed round type carbides of $Cr_{23}C_6$ and needle type nitrides of AlN in the matrix of martensite, representing 600~700 Hv. And the thickness of the surface layer increased with increasing Al content and HTGN treatment time. The inner region that was not permeated nitrogen showed chromium carbides in the mixed phase of martensite and ferrite for the 0.53% Al alloyed steel, however chromium carbides in the matrix of ferrite single phase were shown for the steels with the addition of 1.76%Al and 2.36%Al, representing the hardness of ~200 Hv. During nitrogen permeation from surface to the interior, substitutional elements of Cr, Al and Si moved toward the surface and interstitial element of carbon also moved from interior to the surface. This movement of alloying elements leads high concentration of these elements at the outmost surface, subsequently the lowest peak of substitutional elements were shown in the vicinity of near surface. After showing the lowest peak, the high concentration region of Al and C were formed due to the continuous movement of Al toward the surface. The long discontinuous precipitates of $Cr_{23}C_6$ and AlN were formed along the outmost surface owing to the high concentration of these alloying elements.

Influence of the Cr-Carbides on the Mechanical Characteristics during Isothermal Heat-Treatment of the Mod.9Cr-1Mo Steel (Mod.9Cr-1Mo강의 항온변태시 기계적 특성변화에 미치는 Cr탄화물의 영향)

  • Hur, Sung-Kang;Lee, Jae-Hyun;Gu, Ji-Ho;Shin, Kee-Sam;He, Yinsheng;Shin, Jong-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.46-53
    • /
    • 2012
  • In this study, mechanical tests and microstructural analyses including TEM analyses with EDX of precipitates in modified 9Cr-1Mo steel were carried out to determine the cause of embrittlement observed after heat-treatment, which limits the usage of the alloy for power plants. Mod. 9Cr-1Mo steel specimens at austenite temperature were quenched to the molten salt baths at $760^{\circ}C$ and $700^{\circ}C$, in which the specimens were kept for 10 min ~ 10 hr with subsequent air-cooling. Impact tests showed that the impact value dropped abruptly when the specimens were kept longer than 30 min at $\sim760^{\circ}C$ reaching to minima in about 1 hr, and then increasing at further retention. The tensile strength of the specimens reached the minimum value without much change afterward, whereas the values of elongation showed the same trend as that of the impact value. The isothermally heat-treated steel at $700^{\circ}C$ also showed a minimum impact value in about 1 hr. These results suggest that the isothermal heattreatment at 760 and $700^{\circ}C$ for about 1 hr induces temporal embrittlement in Mod. 9Cr-1Mo steel. The microstructural examination of all the specimens with extraction replica of the carbides revealed that the specimens with temporal embrittlement had $Cr_2C$, indicating that the cause of the embrittlement was the precipitation of the $Cr_2C$. In addition, TEM/EDX results showed that the Fe/Cr ratio was 0.033 to 0.055 for $Cr_2C$, whereas it was 0.48 to 0.75 for $Cr_{23}C_6$, making the distinction of the $Cr_2C$ and $Cr_{23}C_6$ possible even without direct electron diffraction analyses.