• Title/Summary/Keyword: $Cr/TiO_2$

Search Result 275, Processing Time 0.025 seconds

The Mineralogical and Geochemical Study on Korean Scheelites and its Application to the Ore Prospecting (한국산 灰重石鑛의 광물학적, 지화학적 연구 및 그의 探査에의 이용)

  • So, Chil-Sup;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.79-93
    • /
    • 1979
  • Twenty five samples of the scheelite-powellite series from twelve Korean tungsten deposits of various geologic settings were studied mineralogically and geochemically. Variations in the trace-element contents of the scheelite minerals are considered in relation to geologic settings and mineralogic properties. Scheelites from ore deposits developed in similar geologic settings and under similar physicochemical conditions are characterized by specific combinations of trace elements.

  • PDF

Mineral chemistry and texture of the zoned amphiboles of the amphibolites in the Hwanggangri area, the northeastern region of Ogcheon metamorphic belt, Korea (옥천변성대 북동부 황강리 지역내 앰피볼라이트에 나타나는 대상 각섬석의 광물화학 및 조직)

  • 유영복;권용완;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.99-118
    • /
    • 2000
  • The variation of Na(A), K, Na(M4), A l O and Al(VI)+Fe3++Ti+Cr in the zonal amphiboles from the amphibolites of the Hwanggangri area indicates that the tschermakite-, edenite- and glaucophane substitutions are higher in the rim than in the core, in which actinolite changes to hornblende with going outward from core to rim. The contents of substitutional elements of hornblende~ of three samples@l29-2, M76-2, M78), which include diopside and greenish brown hornblende and are thought to represent the highest metamorphic grade, are lower than those of rim homblendes of the lower metamorphic grade and are higher than those of core actinolite that they conform to the middle domain in those of the whole amphiboles. Considerations about the origin of zonal amphiboles are as follows. Firstly, two samples(R102-1, R210-9) have the same amphibole composition like core is actinolitic hornblende, and rim is magnesian hastingsite although plagioclases such as albite(R102-1) and labradorite (R210-9) show the wide compositional difference. It is impossible to produce both albite and labradorite by one metamorphic event. Judging from this wide compositional difference, the existence of zonal amphiboles does not indicate the miscibility gap but is thought to be the result of the polymetamorphism. Secondly, the crystallographically sharp and gradational interfaces between actinolite and hornblende fonned in the amphibolites rgardless of the distance from the granite. In case of the samples(R210-9, M128, M130) having the sharp interface between two amphiboles, the plagioclase show the compositions produced at the low grade and the medium grade. Because such variable compositions of plagioclase indicates the overprinting of metamorphism of higher metamorphic grade than that of the formation of miscibility gap, it implies that zonal amphiboles were formed by polymetarnorphism. In case of the gradational interface between two amphiboles, this texture is also thought to be the effect of polymetamorphism from the fact that this texture mainly occur near the granite and from the consideration of the metamporphic grade. The relationship between the compositional variations of the amphiboles and the pressure types of metamorphism suggests that actinolitic core is considered to be grown by the metamorphism of medium pressure, while hornblende rim is shown to have genetic relations with the metamorphism of low pressure type.

  • PDF

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF