• Title/Summary/Keyword: $Co^{2+}$-dependent metalloenzyme

Search Result 1, Processing Time 0.015 seconds

Characterization of Phytase from Bacillus coagulans IDCC 1201 (Bacillus coagulans IDCC 1201이 생산하는 Phytase의 특성)

  • Lee Seung-Hun;Kwon Hyuk-Sang;Koo Kyo-Tan;Kang Byung-Hwa;Kim Tae-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.28-34
    • /
    • 2006
  • A native extracellular acid phosphatase, phytase (EC 3.1.3.8), from Bacillus coagulans IDCC 1201 (commercially known as Lactobacillus sporogenes) used as probiotics, was characterized. Though some strains of B. coagulans have been evaluated with regard to several health-promoting effects, it has not been reported to produce phytase. Partially purified phytase front the strain IDCC 1201 had a pH optimum of 4.0 and a temperature optimum of $50^{\circ}C$, respectively. The requirement for divalent cations was studied and cobalt ion remarkably increased the enzyme activity. The removal of metal ions from the enzyme by EDTA decreased activity below 50%. The enzyme activity depleted restored when the assay was performed in the presence of $Co^{2+}$. Also, $Co^{2+}$ is the most active stimulator and has unique activation effect at high temperature. The phytase was specific for sodium phytate and p-nitrophenylphosphate, which is different from other known Bacilli phytases. The putative amino acid sequences of the phytase from B. coagulans IDCC 1201 were very similar to that of the phytase from B. subtilis strain 168. Based on these data, we concluded that the phytase from B. coagulans IDCC 1201 is a $Co^{2+}$-dependent acid phosphatase. Therefore, the strain B. coagulans IDCC 1201 is thought to be a valuable addititive for livestocks as well as a beneficial probiotics for human.