• Title/Summary/Keyword: $Cl_2/Ar$ and $SF_6/Ar$

Search Result 9, Processing Time 0.025 seconds

Study on the Surface Reaction of Pt Thin Film with SF$_6$/Ar and Cl$_2$/Ar Plasma Gases (Pt 박막의 SF$_6$/Ar과 C1$_2$/Ar 플라즈마 가스와의 표면반응에 관한 연구)

  • 김상훈;주섭열;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.3
    • /
    • pp.63-67
    • /
    • 2001
  • Up to now, most studies about Pt-etching have been focused on physical sputtering mechanism with Cl-based plasma, while only a limited results are available for etching characteristics with fluorine-based plasma. In this study, etch characteristics of Pt thin film with $Cl_2$/Ar and $SF_{6}$/Ar Ar gas chemistries have been studied with ECR plasma etching system. It is confirmed that $SF_{6}$/Ar Ar plasma chemistry could make volatile etch-products through the reaction with Pt thin film. Also the improvement in etch rate, etch profile and surface roughness is obtained due to the formation of volatile platinum fluoride compounds.

  • PDF

Study on the Surface Reaction of Pt thin Film with $SF_6/Ar and Cl_2/Ar$ plasma gases (Pt 박막의 $SF_6/Ar과 Cl_2/Ar4$ 플라즈마 가스와의 표면반응에 관한 연구)

  • 김상훈;주섭열;안진호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.110-113
    • /
    • 2001
  • ECR(electron cyclotron resonance) 플라즈마 식각 장비를 이용하여 SF$_{6}$/Ar과 Cl$_2$/Ar 플라즈마 가스에 대한 Platinum (이하 Pt) 박막의 식각 특성을 연구하였다. Pt 박막의 경우 Cl$_2$ 가스 혼합물에 대한 식각 특성은 많이 보고가 되어 왔으나 상대적으로 Fluorine 계열의 가스 혼합물에 의한 시각 연구는 미비하였다. 본 연구에서는 SF$_{6}$/Ar과 Cl$_2$/Ar 플라즈마 가스를 이용한 Pt 박막의 식각 특성을 비교 분석하고 각각의 가스와 Pt 박막과의 반응을 분석, 식각 특성을 개선하고자 하였다.

  • PDF

Parametric study of inductively coupled plasma etching of GaN epitaxy layer (GaN epitaxy 층의 식각특성에 미치는 공정변수의 영향)

  • Choi, Byoung Su;Park, Hae Li;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.145-149
    • /
    • 2016
  • The effect of process parameters such as plasma composition, ICP (Inductively Coupled Plasma) source power and rf chuck power on the etch characteristics of GaN epitaxy layer was studied. $Cl_2/Ar$ ICP discharges showed higher etch rates than $SF_6/Ar$ discharges because of the higher volatility of $GaCl_x$ etch products than $GaF_x$ compounds. As the Ar ratio increases in the $Cl_2/Ar$ ICP discharges, the etch anisotropy was enhanced due to the improved physical component of the etching. For both plasma chemistries, the GaN etch rate increased continuously as both the ICP source power and rf chuck power increased, and a maximum etch rate of 251.9 nm/min was obtained at $13Cl_2/2Ar$, 750W ICP power, 400W rf chuck power and 10 mTorr condition.

Etch Characteristics of Magnetic Tunnel Junction Stack Patterned with Nanometer Size for Magnetic Random Access Memory (자성 메모리의 적용을 위한 나노미터 크기로 패턴된 Magnetic Tunnel Junction의 식각 특성)

  • Park, Ik Hyun;Lee, Jang Woo;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.853-856
    • /
    • 2005
  • Inductively coupled plasma reactive ion etching of magnetic tunnel junction (MTJ) stack, which is one of the key elements in magnetic random access memory, was studied. The MTJ stacks were patterned in nanometer size by electron(e)-beam lithography, and TiN thin films were employed as a hard mask. The etch process of TiN hard mask was examined using Ar, $Cl_2/Ar$, and $SF_6/Ar$. The TiN hard mask patterned by e-beam lithography was first etched and then the etching of MTJ stack was performed. The MTJ stacks were etched using Ar, $Cl_2/Ar$, and $BCl_3/Ar$ gases by varying gas concentration and pressure.

A Study on the Properties of Platinum Dry Etching using the MICP (MICP를 이용한 Platinum 건식 식각 특성에 관한 연구)

  • Kim, Jin-Sung;Kim, Jung-Hun;Kim, Youn-Taeg;Joo, Jung-Hoon;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.279-281
    • /
    • 1997
  • The properties of Platinum dry etching were investigated in MICP(Magnetized Inductively Coupled Plasma). The problem with Platinum etching is the redeposition of sputtered Platinum on the sidewall. Because of the redeposits on the sidewall, the etching of patterned Platinum structure produce feature sizes that exceed the original dimension of the PR size and the etch profile has needle-like shape.[1] Generally, $Cl_2$ plasma is used for the fence-free etching.[1][2][3] The main object of this study was to investigate a new process technology for the fence-free Pt etching. Platinum was etched with Ar plasma at the cryogenic temperature and with Ar/$SF_6$ plasma at room temperature. In cryogenic etching, the height of fence was reduced to 20% at $-190^{\circ}C$ compared with that of room temp., but the etch profile was not fence-free. In Ar/$SF_6$ Plasma, chemical reaction took part in etching process. The trend of properties of Ar/$SF_6$ Plasma etching is similar to that of $Cl_2$ Plasma etching. Fence-free etching was possible, but PR selectivity was very low. A new gas chemistry for fence-free Platinum etching was proposed in this study.

  • PDF

Surface Morphology and Characteristics of LiNbO3 Single Crystal by Helicon Wave Plasma Etching (Helicon Wave Plasma에 의해 식각된 단결정 LiNbO3의 표면 형상 및 특성)

  • 박우정;양우석;이한영;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.886-890
    • /
    • 2003
  • The etching characteristics of a LiNbO$_3$ single crystal have been investigated using helicon wave plasma source with bias power and the mixture of CF$_4$, HBr, SF$_{6}$ gas parameters. The etching rate of LiNbO$_3$ with etching parameters was evaluated by surface profiler. The etching surface was evaluated by Atomic Force Microscopy (AFM). The surface morphology of the etched LiNbO$_3$ changed with bias power and the mixture of CF$_4$/Ar/Cl$_2$, HBr/Ar/Cl$_2$, and SF$_{6}$/Ar/Cl$_2$ parameters. Optimum etching conditions, considering both the surface flatness and etch rate were determined.

High density plasma etching of novel dielectric thin films: $Ta_{2}O_{5}$ and $(Ba,Sr)TiO_{3}$

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.5
    • /
    • pp.231-237
    • /
    • 2001
  • Etch rates up to 120 nm/min for $Ta_{2}O_{5}$ were achieved in both $SF_{6}/Ar$ and $Cl_{2}/Ar$ discharges. The effect of ultraviolet (UV) light illumination during ICP etching on $Ta_{2}O_{5}$ etch rate in those plasma chemistries was examined and UV illumination was found to produce significant enhancements in $Ta_{2}O_{5}$ etch rates most likely due to photoassisted desorption of the etch products. The effects of ion flux, ion energy, and plasma composition on (Ba, Sr)$TiO_3$ etch rate were examined and maximum etch rate ~90 nm/min was achieved in $Cl_{2}/Ar$ ICP discharges while $CH_{4}/H_{2}/Ar$ chemistry produced extremely low etch rates (${\leq}10\;nm/min$) under all conditions.

  • PDF

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges (식각공정용 가스방전에서 이온 및 활성종 밀도의 전자밀도 및 온도 의존성에 대한 수치해석적 분석)

  • An, Choong-Gi;Park, Min-Hae;Son, Hyung-Min;Shin, Woo-Hyung;Kwon, Deuk-Chul;You, Shin-Jae;Kim, Jung-Hyung;Yoon, Nam-Sik
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.422-429
    • /
    • 2011
  • Dependence of radical and ion density on electron density and temperature is numerically investigated for $Cl_2$/Ar, $CF_4$, $CF_4/O_2$, $CF_4/H_2$, $C_2F_6$, $C_4F_8$ and $SF_6$ discharges which are widely used for etching process. We derived a governing equation set for radical and ion densities as functions of the electron density and temperature, which are easier to measure relatively, from continuity equations by assuming steady state condition. Used rate coefficients of reactions in numerical calculations are directly produced from collisional cross sections or collected from various papers. If the rate coefficients have different values for a same reaction, calculation results were compared with experimental results. Then, we selected rate coefficients which show better agreement with the experimental results.