• Title/Summary/Keyword: $CdGa_2Se4$ layer

Search Result 15, Processing Time 0.029 seconds

Study on energy of valence-band splitting from photocurrent spectrum of photoconductive $CdGa_2Se_4$ thin films

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.66-66
    • /
    • 2009
  • The photoconductive $CdGa_2Se_4$ layer was grown through the hot wall epitaxy method. From the photocurrent (PC) measurements, the three peaks in the PC spectra were associated with the band-to-band transitions. The PC intensities were observed to decrease with decreasing temperature. The valence-band splitting on $CdGa_2Se_4$ was also observed by means of the PC spectroscopy. The crystal field splitting and the spin orbit splitting turned out to be 0.1604 and 0.4179 eV at 10 K, respectively.

  • PDF

Band Alignment at CdS/wide-band-gap Cu(In,Ga)Se2 Hetero-junction by using PES/IPES

  • Kong, Sok-Hyun;Kima, Kyung-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.229-232
    • /
    • 2005
  • Direct characterization of band alignment at chemical bath deposition $(CBD)-CdS/Cu_{0.93}(In_{1-x}Ga_x)Se_2$ has been carried out by photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES). Ar ion beam etching at the condition of the low ion kinetic energy of 400 eV yields a removal of surface contamination as well as successful development of intrinsic feature of each layer and the interfaces. Especially interior regions of the wide gap CIGS layers with a band gap of $1.4\~1.6\;eV$ were successfully exposed. IPES spectra revealed that conduction band offset (CBO) at the interface region over the wide gap CIGS of x = 0.60 and 0.75 was negative, where the conduction band minimum of CdS was lower than that of CIGS. It was also observed that an energy spacing between conduction band minimum (CBM) of CdS layer and valance band maximum (VBM) of $Cu_{0.93}(In_{0.25}Ga_{0.75})Se_2$ layer at interface region was no wider than that of the interface over the $Cu_{0.93}(In_{0.60}Ga_{0.40})Se_2$ layer.

Effect of Pre/Post-Treatment on the Performance of Cu(In,Ga)(S,Se)2 Absorber Layer Manufactured in a Two-Step Process (KCN 에칭 및 CdS 후열처리가 Cu(In,Ga)(S,Se)2 광흡수층 성능에 미치는 영향)

  • Kim, A-Hyun;Lee, GyeongA;Jeon, Chan-Wook
    • New & Renewable Energy
    • /
    • v.17 no.4
    • /
    • pp.36-45
    • /
    • 2021
  • To remove the Cu secondary phase remaining on the surface of a CIGSSe absorber layer manufactured by the two-step process, KCN etching was applied before depositing the CdS buffer layer. In addition, it was possible to increase the conversion efficiency by air annealing after forming the CdS buffer layer. In this study, various pre-treatment/post-treatment conditions wereapplied to the S-containing CIGSSe absorber layerbefore and after formation of the CdS buffer layer to experimentally confirm whether similareffects as those of Se-terminated CIGSe were exhibited. Contrary to expectations, it was noted that CdS air annealing had negative effects.

Binding energy study from Photocurrent signal in $CdGa_2Se4$ layers

  • Lee, Sang-Youl;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.47-47
    • /
    • 2009
  • The photoconductive $CdGa_2Se4$ layer has been investigated using photocurrent (PC) spectroscopy as a function of temperature. Three peaks corresponding to the band-to-band transitions were observed in the PC spectra for all temperature ranges. Also, contrary to our expectation, the PC intensities decreased with decreasing temperatures. From the relation of log $J_{ph}$ vs 1/T, where $J_{ph}$ is the PC density, two dominant levels by the exponential variation of the PC with varying temperature were observed, one at high temperatures and the other at low temperatures.

  • PDF

Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications ($Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구)

  • Kim, Gee-Yeong;Jeong, Ah-Reum;Jo, William
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

CIGS 박막태양전지용 Cd free형 ZnS(O, OH) 버퍼층 제조 및 특성평가

  • Kim, Hye-Jin;Kim, Jae-Ung;Kim, Gi-Rim;Jeong, Deok-Yeong;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.257.1-257.1
    • /
    • 2015
  • Cu(In,Ga)Se2 (CIGS) 박막 태양 전지에서 buffer layer는 CIGS 흡수층과 TCO 사이의 밴드갭 차이에 대한 문제점과 lattice mismatch를 해결하기 위해 필수적이다. 흔히 buffer layer 물질로는 CdS가 가장 많이 사용되고 있으나 Cd의 독성에 관한 문제가 야기되고 있다. 따라서 ZnS(O, OH) buffer layer가 친환경 물질로 기존의 CdS 버퍼 층의 대체 물질로 각광 받고 있으며, 단파장 범위에서 높은 투과율로 인해 wide band gap의 Chalcopyrite 태양 전지에 응용되는 buffer layer로 많은 연구가 이루어지고 있다. 또한 buffer layer를 최적화 하여 carrier lifetime과 양자 효율이 증가시킬 수 있는 특성을 가지고 있다. 이 연구에서는 Cu(In,Ga)Se2 (CIGS) 박막에 화학습식공정 (CBD) 방법을 이용하여 최적화된 ZnS(O, OH)의 증착 조건을 찾고, 고품질의 buffer layer를 제조하기 위한 실험에 초점을 맞췄다. 또한, buffer layer의 막질을 개선하고 균일한 막을 제조하기 위해 processing parameters인 시약의 농도, 제조 시간 및 온도 등의 다양한 변화를 통해 실험을 진행하였다. 그 후 최적화된 ZnS(O, OH) buffer layer의 특성 분석을 위해 X-ray diffraction(XRD), photoluminescence (PL), scanning electron microscope (SEM) and GD-OES을 이용하였고, 이를 통해 제조된 CIGS 박막 태양전지는 light induced current-voltage (LIV) and external quantum efficiency (EQE)를 통해 특성 분석을 실시 하였다. 결과적으로, 제조된 ZnS(O, OH) buffer layer의 $ZnSO4{\cdot}7H2O$의 농도는 0.16 M, Thiourea는 0.5 M, NH4OH는 7.5 M, 그리고 반응 온도는 77.5 oC의 조건 하에 CIGS 기판 위에 균일하고 균열이 없는 ZnS(O, OH) 박막을 제조하였으며 이때 제조된 태양전지의 소자 특성은 Voc = 0.478 V, Jsc = 35.79 mA/cm2, FF = 47.77%, ${\eta}=8,18 %$이다.

  • PDF

Thermal diffusion properties of Zn, Cd, S, and B at the interface of CuInGaSe2 solar cells

  • Yoon, Young-Gui;Choi, In-Hwan
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • Two different window-structured $CuInGaSe_2$(CIGS) solar cells, i.e., CIGS/thin-CdS/ZnO:B(sample A) and CIGS/very thin-CdS/Zn(S/O)/ZnO:B(sample B), were prepared, and the diffusivity of Zn, Cd, S, and B atoms, respectively, in the CIGS, ZnO or Zn(S/O) layer was estimated by a theoretical fit to experimental secondary ion mass spectrometer data. Diffusivities of Zn, Cd, S, and B atoms in CIGS were $2.0{\times}10^{-13}(1.5{\times}10^{-13})$, $4.6{\times}10^{-13}(4.4{\times}10^{-13})$, $1.6{\times}10^{-13}(1.8{\times}10^{-13})$, and $1.2{\times}10^{-12}cm^2/s$ at 423K, respectively, where the values in parentheses were obtained from sample B and the others from sample A. The diffusivity of the B atom in a Zn(S/O) of sample B was $2.1{\times}10^{-14}cm^2/sec$. Moreover, the diffusivities of Cd and S atoms diffusing back into ZnO(sample A) or Zn(S/O)(sample A) layers were extremely low at 423K, and the estimated diffusion coefficients were $2.2{\times}10^{-15}cm^2/s$ for Cd and $3.0{\times}10^{-15}cm^2/s$ for S.

암모니아의 농도에 따른 CBD-ZnS/CIGS 박막태양전지의 제작 및 분석

  • Jeong, Yong-Deok;Choe, Hae-Won;Jo, Dae-Hyeong;Park, Rae-Man;Lee, Gyu-Seok;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.298-299
    • /
    • 2010
  • Cu(In, Ga)Se2 (CIGS) 박막 태양전지는 Soda lime glass/Mo/CIGS/CdS/ZnO/ITO/Al 의 구조를 가지고 있다. CIGS 화합물은 direct bandgap 구조를 하고 있으며, 광흡수율이 다른 어떤 물질들 보다 뛰어나 박막으로도 충분히 태양광을 흡수할 수 있다. 또한 Ga의 도핑 농도에 따른 밴드갭 조절도 가능하다. 이러한 성질들로 인해 현재 박막태양전지로서 20.1%의 최고효율을 가지고 있다.[1] CIGS 박막 태양전지에서 p-CIGS layer와 스퍼터링으로 증착되는 n-ZnO layer사이의 buffer 층으로 chemical bath deposition (CBD)-CdS 박막을 주로 사용한다. CBD-CdS 박막은 n-ZnO 스퍼터로 증착 시킬 때, CIGS 층의 손상을 최소화하고, 이 두 층 사이에서의 격자상수와 밴드갭의 차이를 줄여주어 CIGS 박막태양전지의 효율을 증가 시키는 역할을 한다. 하지만, Cd (카드뮴)의 심각한 독성과 낮은 밴드갭(2.4eV)으로 인해 CIGS 층에서의 광흡수율을 줄여, CdS를 대체할 새로운 buffer 층의 필요성이 대두되었다.[2] 그 대안으로 ZnS, Zn(O, S, OH), (Zn, Mg)O, In2S3 같은 물질이 연구되고 있다. 현재 CBD-ZnS를 buffer 층으로 사용한 CIGS 박막태양전지의 효율은 최고 18.6%로 CBD-CdS의 최고효율보다는 약 1.5% 낮지만, ZnS가 높은 밴드갭(3.7~3.8eV)과 Cd-free 물질이라는 점에서 CdS를 대체할 물질로 각광받고 있다. 본 연구에서는 기존의 CdS 박막을 제조하는 방법과 같은 방법인 CBD를 이용하여 ZnS 박막을 제조하였다. ZnS 박막을 제조하기 위해서는 Zinc sulfate, Thiourea, 암모니아가 사용된다. 암모니아의 mol 농도에 따른 CBD-ZnS/CIGS 박막태양전지의 효율 변화를 관찰하기 위해 암모니아의 mol 농도는 1 mol, 2 mol, 3 mol, 4 mol, 5 mol, 6 mol, 그 이상의 과량을 사용하여 실험하였다. 실험 결과, 암모니아농도 5 mol에서 효율 13.82%를 확인할 수 있었다. 최고효율을 보인 조건인 암모니아 농도가 5 mol 일 때, Voc는 0.602V, Jsc는 33.109mA/cm2, FF는 69.4%를 나타내었다.

  • PDF

Effect of the Concentration of Complexing Agent on the Formation of ZnS Buffer Layer by CBD Method (CBD 방법에 의한 ZnS 버퍼층 형성의 착화제 농도에 따른 영향)

  • Kwon, Sang Jik;Yoo, In Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.10
    • /
    • pp.625-630
    • /
    • 2017
  • ZnS was chemically deposited as a buffer layer alternative to CdS, for use as a Cd-free buffer layer in $Cu(In_{1-x}Ga_x)Se_2$ (CIGS) solar cells. The deposition of a thin film of ZnS was carried out by chemical bath deposition, following which the structural and optical properties of the ZnS layer were studied. For the experiments, zinc sulfate hepta-hydrate ($ZnSO_4{\cdot}7H_2O$), thiourea ($SC(NH_2)_2$), and ammonia ($NH_4OH$) were used as the reacting agents. The mole concentrations of $ZnSO_4$ and $SC(NH_2)_2$ were fixed at 0.03 M and 0.8 M, respectively, while that of ammonia, which acts as a complexing agent, was varied from 0.3 M to 3.5 M. By varying the mole concentration of ammonia, optimal values for parameters like optical transmission, deposition rate, and surface morphology were determined. For the fixed mole concentrations of $0.03M\;ZnSO_4{\cdot}7H_2O$ and $0.8M\;SC(NH_2)_2$, it was established that 3.0 M of ammonia could provide optimal values of the deposition rate (5.5 nm/min), average optical transmittance (81%), and energy band gap (3.81 eV), rendering the chemically deposited ZnS suitable for use as a Cd-free buffer layer in CIGS solar cells.

Effects of reversible metastable defect induced by illumination on Cu(In,Ga)Se2 solar cell with CBD-ZnS buffer layer

  • Lee, Woo-Jung;Yu, Hye-Jung;Cho, Dae-Hyung;Wi, Jae-Hyung;Han, Won-Seok;Yoo, Jisu;Yi, Yeonjin;Song, Jung-Hoon;Chung, Yong-Duck
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.431-431
    • /
    • 2016
  • Typical Cu(In,Ga)Se2 (CIGS)-based solar cells have a buffer layer between CIGS absorber layer and transparent ZnO front electrode, which plays an important role in improving the cell performance. Among various buffer materials, chemical bath deposition (CBD)-ZnS is being steadily studied to alternative to conventional CdS and the efficiency of CBD-ZnS/CIGS solar cell shows the comparable values with that of CdS/CIGS solar cell. The intriguing thing is that reversible changes occur after exposure to illumination due to the metastable defect states in completed ZnS/CIGS solar cell, which induces an improvement of solar cell performance. Thus, it implies that the understanding of metastable defects in CBD-ZnS/CIGS solar cell is important issue. In this study, we fabricate the ITO/i-ZnO/CBD-ZnS/CIGS/Mo/SLG solar cells by controlling the NH4OH mole concentration (from 2 M to 3.5 M) of CBD-ZnS buffer layer and observe their conversion efficiency with and without light soaking for 1 hr. From the results, NH4OH mole concentration and light exposure can significantly affect the CBD-ZnS/CIGS solar cell performance. In order to investigate that which layer can contain metastable defect states to influence on solar cell performance, impedance spectroscopy and capacitance profiling technique with exposure to illumination have been applied to CBD-ZnS/CIGS solar cell. These techniques give a very useful information on the density of states within the bandgap of CIGS, free carriers density, and light-induced metastable effects. Here, we present the rearranged charge distribution after exposure to illumination and suggest the origin of the metastable defect states in CBD-ZnS/CIGS solar cell.

  • PDF