• Title/Summary/Keyword: $CaGa_2S_4:Eu^{2+}$

Search Result 11, Processing Time 0.026 seconds

Synthesis and Luminescence Properties of CaS:Eu2+,Si4+,Ga3+ for a White LED

  • Oh, Sung-Il;Jeong, Yong-Kwang;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.419-422
    • /
    • 2009
  • The luminescence intensity of calcium sulfide codoped with $Eu^{2+},\;Si^{4+}\;and\;Ga^{3+}$ was investigated as a function of the dopant concentration. An enhancement of the red luminescence resulted from the incorporation of $Si^{4+}\;and\;Ga^{3+}\;into\;CaS:Eu^{2+}.\;The\;non-codoped\;CaS:Eu^{2+}$ converted only 3.0% of the absorbed blue light into luminescence. As the $Si^{4+}\;and\;Ga^{3+}$ were embedded into the host lattice, the luminescence intensity increased and reached a maximum of Q = 10.0% at optimized concentrations of the codopants in CaS. Optimized CaS:$Eu^{2+},Si^{4+},Ga^{3+}$ phosphors were fabricated with blue GaN LED and the chromaticity index of the phosphor-formulated GaN LED was investigated as a function of the wt% of the optimized phosphor.

Cathodoluminescence and Longevity Properties of Potential Sr1-xMxGa2S4:Eu (M = Ba or Ca) Green Phosphors for Field Emission Displays

  • Ko, Ki-Young;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.822-826
    • /
    • 2008
  • We report the cathodoluminescence and aging properties of a series of green phosphors of formula $Sr_{1-x}M_xGa_2S_4$:Eu (x = 0.0-1.0, M = Ba or Ca) that have potential applications in field emission displays (FEDs). The series of phosphors was synthesized via NaBr-aided solid-state reactions in a flowing $H_2S$ stream. A low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu maintains the orthorhombic phase of pure $SrGa_2S_4$:Eu phosphors. Further, a low level ($\sim$20%) of Ba or Ca substitution for Sr in $SrGa_2S_4$:Eu provides various green colors and sufficient brightness for FED applications. Substitution of Ba or Ca for Sr in $SrGa_2S_4$:Eu also improved the stability of the phosphor when it was operated under electron-beam irradiation of 5 kV.

Photoluminescence properties of $CaS_{1-x}Se_x:Eu$ phosphors ($CaS_{1-x}Se_x:Eu$ 형광체의 발광 특성)

  • Ryu, Eun-Kyoung;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.5
    • /
    • pp.204-209
    • /
    • 2007
  • We synthesized a series of $CaS_{1-x}Se_x:Eu$ red-emitting phosphors for application in phosphor-converted three-band white light emitting diode(LED). The photoluminescence and structural properties of $CaS_{1-x}Se_x:Eu$ were examined. The $CaS_{1-x}Se_x:Eu$ phosphors have a strong absorption at 455 nm, which is the emission wavelength of a blue LED. CaS:Eu has a red omission peak at 651 nm due to the $4f^65d^1(T_{2g}){\rightarrow}4f^7(^8S_{7/2})$ transition of the $Eu^{2+}$. The emission peak of $CaS_{1-x}Se_x:Eu$ is shifted from 651 to 598 nm with increasing Se content. $CaS_{1-x}Se_x:Eu$ can be used as wavelength-tunable red-emitting phosphors pumped by a blue LED. We also fabricated a three-band white LED by doping $SrGa_2S_4:Eu$ and $CaS_{0.50}Se_{0.50}:Eu$ phosphors onto a blue LED chip.

Preparation and Photoluminescence Properties of $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) Phosphor

  • Yoo, Hyoung-Sun;Kim, Sung-Wook;Han, Ji-Yeon;Park, Bong-Je;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.561-564
    • /
    • 2008
  • $Ba_{1-x}M_xGa_2S_4:Eu^{2+}$ (M = Ca, Sr) phosphor was prepared for white light emitting diodes application. Photoluminescence (PL) emission and excitation bands were red-shifted with increase of Ca and Sr content due to the crystal field effect. Moreover, the PL intensity under 450 nm was increased by substitution of Ca and Sr.

  • PDF

Luminescence Characteristics of Mg2+·Ba2+ Co-Doped Sr2SiO4:Eu Yellow Phosphor for Light Emitting Diodes (LED용Mg2+·Ba2+Co-Doped Sr2SiO4:Eu 노란색 형광체의 발광특성)

  • Choi, Kyoung-Jae;Jee, Soon-Duk;Kim, Chang-Hae;Lee, Sang-Hyuk;Kim, Ho-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.147-151
    • /
    • 2007
  • An improvement for the efficiency of the $Sr_{2}SiO_{4}:Eu$ yellow phosphor under the $450{\sim}470\;nm$ excitation range have been achieved by adding the co-doping element ($Mg^{2+}\;and\;Ba^{2+}$) in the host. White LEDs were fabricated through an integration of an blue (InGaN) chip (${\lambda}_{cm}=450\;nm$) and a blend of two phosphors ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) in a single package. The InGaN-based two phosphor blends ($Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor) LEDs showed three bands at 450 nm, 550 nm and 640 nm, respectively. The 450 nm emission band was due to a radiative recombination from an InGaN active layer. This 450 nm emission was used as an optical transition of the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor. As a consequence of a preparation of white LEDs using the $Mg^{2+},\;Ba^{2+}\;co-doped\;Sr_{2}SiO_{4}:Eu$ yellow phosphor+CaS:Eu red phosphor yellow phosphor and CaS:Eu red phosphor, the highest luminescence efficiency was obtained at the 0.03 mol $Ba^{2+}$ concentration. At this time, the white LEDs showed the CCT (5300 K), CRI (89.9) and luminous efficacy (17.34 lm/W).

Preparation, Characterization and Photoluminescence Properties of Ca1-xSrxS:Eu Red-emitting Phosphors for a White LED

  • Sung, Hye-Jin;Cho, Young-Sik;Huh, Young-Duk;Do, Young-Rag
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1280-1284
    • /
    • 2007
  • A series of Ca1-xSrxS:Eu (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) phosphors were synthesized by solid-state reactions. The Ca1-xSrxS:Eu phosphors have a strong absorption at 455 nm, which corresponds to the emission wavelength of a blue LED. The emission peak of Ca1-xSrxS:Eu is blue shifted from 655 to 618 nm with increasing Sr content. The characteristics of Ca1-xSrxS:Eu phosphors make them suitable for use as wavelengthtunable red-emitting phosphors for three-band white LEDs pumped by a blue LED. In support of this, we fabricated a three-band white LED by coating SrGa2S4:Eu and Ca0.6Sr0.4S:Eu phosphors onto a blue LED chip, and characterized its optical properties.

Improving color gamut of white LED for LCD B/L application

  • Lee, H.J.;Yoo, J.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1100-1102
    • /
    • 2006
  • A three-band white LED was fabricated by combining a blue LED with SrGa2S4:Eu (green) and CaS:Eu (red) phosphors for improving the color gamut, which is favorable to full color image.

  • PDF

Synthesis of the $CaGa_2S_4:Eu^{2+}$ phosphors and Application in White LEDs

  • Kim, Jae-Myung;Kim, Kyung-Nam;Park, Joung-Kyu;Kim, Chang-Hae;Jang, Ho-Gyeom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1623-1626
    • /
    • 2005
  • The thiogallate phosphors which are well known for a long time as phosphor materials for CRT or EL device were reported. Those have high luminescent properties at long-wavelength region. Among those phosphors, the samples with divalent europium doped CaGa2S4 were prepared by a simple process under the reduction atmosphere $(5%\;H_2/\;95%\;N_2)$ without toxic gas such as H2S or CS2. The prepared phosphor shows a higher luminescent efficiency (about 120%) than that of $YAG:Ce^{3+}$ phosphor. Consequently, this phosphor is possible to be applicable to white LED lamp because of the high luminescent efficiency.

  • PDF

Geochemistry of the Kwanaksan alkali feldspar granite: A-type granite\ulcorner (관악산 알칼리 장석 화강암의 지구화학 : A-형 화강암\ulcorner)

  • S-T.Kwon;K.B. Shin;H.K. Park;S.A. Mertzman
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.31-48
    • /
    • 1995
  • The Jurassic Kwanaksan stock, so far known to be composed of biotite granite only, has the mineral assemblage of quartz+K-feldspar+plagioclase+biotite${\pm}$gernet. The lithology of the stock is classified as alkali feldspar granite by their mode and plagioclase compositions (An<5). Subsolvus feldspars, rather early crystallization of biotite, and shallow emplacement depth estimated from Q-Ab-Or diagram suggest hydrous nature of the magma, which contrasts with anhydrous A-type like geochemistry described below. Major and trace element compositions of the Kwanaksan stock are distinct from those of the adjacent Seoul batholith, suggesting a genetic difference between the two, The Kwanaksan stock shows geochemical characteristics similar to A-type granite in contrast to most other Mesozoic granites in Korea, in that it has high $SiO_2$(73~78wt%), $Na_2O+K_2O$, Ga(27~47 ppm). Nb(22~40 ppm), Y(48~95 ppm), Fe/Mg and Ga/Al, and low CaO(<0.51 wt%). Ba (8~75 ppm) and Sr(2~23 ppm). However, it has lower Zr and LREE and higher Rb(384~796 ppm) than typical A-type granite. LREE-depleted rare earth element pattern with strong negative Eu anomaly of previous studies is reinterpreted as representing source magma characteristics. The residual material during partial melting is not compatible with pyroxenes, amphibole or garnet, while significant amount of plagioclase is required. Similarity of geochemistry of the Kwanaksan stock to A-type granite suggests the origin of the stock has a chose relationship with that of A-type granite. These observations lead us to propose that the Kwanaksan stock was formed by partial melting of felsic source rock.

  • PDF