• Title/Summary/Keyword: $CaAl_2Si_2O_8$

Search Result 204, Processing Time 0.021 seconds

Fundamental Parameter 법에 의한 만장굴용암 쌍자석주의 형광X선분포

  • ;Ko, Mun-Ok;Kim, Gyung-Sik
    • Journal of the Speleological Society of Korea
    • /
    • v.19 no.20
    • /
    • pp.29-62
    • /
    • 1989
  • Cheju Island, which was formed by volcanic activity, is an oval in its shape with the major axis 80km and the minor axis of 40km. The island holds in its heart Mt. Hanala rising 1,950m above the sea. Petrological study of this volcanic island has been made actively by Sang-Man Lee, Chong-Kwang Won and Moon-Won Li. The chronological measurements of the island by Chong-Kwan Won and Moon-Won Lee showed that it is composed of Sanbangsan trachytes and Backlokdam trachytes(25,000 year ago). These reports are based on the chemical analysis and the rediometric chronological measurements on the ground. However, there has been no reports about the inside of caves. We made an (composition) analysis of the inside of Manjang Cave by the fundamental parameter method in X-ray fluorescence spectrometry. The fundamental parameter method in X-ray fluorescence spectrometry is nondestructive analysis. and it enables us to make the values processed by a computer. The results obtained by this methods are as follows: SiO$_2$(49%), $Al_2$O$_3$(17%), Fe$_2$O$_3$(13%), CaO(8.1%), MgO(5.5%), Na2O(3.6%), TiO$_2$(2.1%), $K_2$O(0.86%), P$_2$O$_{5}$(0.28%), and MnO(0.20%) respectively. The data obtained by the fundamental parameter method in X-ray fluorescene was compared with the data provided by Chong-Kwan Won and Moon-Won Lee. Our measurement was made by K-Ar-method in cooperation with T. ITAYA. The samples are of 30,000-420,000 years ago. The composition of the values of our underground analysis with the existing values obtained by the analyses on the ground produced new data about Cehju volcanic island.d.

  • PDF

Manjang Cave of Twinrock Composition obtained by Fundamen Parameter Method in X-Ray Fluorescence Spectrometry (Fundamental Parameter 법에 의한 만장굴 용암 석주의 형광X선분석)

  • SAWA, ISAO
    • Journal of the Speleological Society of Korea
    • /
    • v.21 no.22
    • /
    • pp.17-56
    • /
    • 1990
  • Cheju Island, which was formed by volcanic activity, is an oval in its shape with the major axis of 80km and the minor axis of 40km. The island holds in its heart Mt. Hanla rising 1,950m above the sea. Petrological study of this volcanic island has been made actively by Sang-Man Lee, Chong-Kwan won and Moon-Won Lee. The chronological measurements of the island by Chong-Kwan Won and Moon-Won Lee showed that it is composed of Sanbangsan trachytes and Backlokdam trachytes(25,000 year ago). These reports are based on the chemical analysis and the rediometric chronological measurements on the ground. However, there has been no reports about the inside of caves. We made an (composition) analysis of the inside of Manjang Cave by the fundamental parameter method in X-ray fluorescence spectrometry. The fundamental parameter method in X-ray fluorescence spectrometry is nondestructive analysis, and it enables us to make the values processed by a computer. The results obtained by this methods are as follows : SiO$_2$(49%), $Al_2$O$_3$(17%), Fe$_2$O$_3$(13%), CaO(8.1%), MgO(5.5%), Na$_2$O(3.6%), TiO$_2$(2.1%), $K_2$O(0.86%), P$_2$O$_{5}$(0.28%), and MnO(0.20%), respectively. The data obtained by the fundamental parameter method in X-ray fluorescence was compared with the data provided by Chong-Kwan and Moon-Won Lee. Our measurement was made by K-Ar-method in cooperation with T.ITAYA. The samples are of 30,000~420,000 year ago. The composition of the values of our underground analysis with the existing values obtained by the analyses on the ground produced new data about Cheju volcanic island.d.

  • PDF

Petrochemistry and Environmental Geochemistry of Shale and Coal from the Daedong Supergroup, Chungnam Coal Field, Korea (충남탄전, 대동누층군의 셰일과 탄질암에 관한 암석화학 및 환경지구화학적 특성)

  • Lee, Chan Hee;Lee, Hyun Koo;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.417-431
    • /
    • 1997
  • Characteristics of sedimentary rocks and enrichment of toxic elements in shale and coal from the Chungnam coal field were investigated based upon geochemistry of major, trace and rare earth elements. Shale and coal of the area are interbedded along the Traissic to the Jurassic Daedong Supergroup, which can be subdivided into grey shale, black shale and coal. The coal had been mined, however all the mines are abandonded due to the economic problems. The shale and coal are characterized by relatively low contents of $SiO_2$, and $Al_2O_3$ and high levels of loss-on-ignition (LOI), CaO and $Na_2O$ in comparison with the North American Shale Composite (NASC). Light rare earth elements (La, Ce, Yb and Lu) are highly enriched with the coal. Ratios of $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ in shale and coal range from 30.0 to 351.8 and from 4.2 to 106.8, which have partly negative correlations against $SiO_2/Al_2O_3$ (1.24 to 6.06), respectively. Those are suggested that controls of mineral compositions in shale and coal can be due to substitution and migration of those elements by diagenesis and metamorphism. Shale and coal of the area may be deposited in terrestrial basin deduced from high C/S (39 to 895) and variable composition of organic carbon (0.39 to 18.40 wt.%) and low contents of reduced sulfur (0.01 to 0.05 wt.%). These shale and coal were originated from the high grade metamorphic and/or igneous rocks, and the rare earth elements of those rocks are slightly influenced with diagenesis and metamorphism on the basis of $Al_2O_3$ versus La, La against Ce, Zr versus Yb, the ratios of La/Ce (0.38 to 0.85) and Th/U (3.6 to 14.6). Characteristics of trace and rare earth elements as Co/Th (0.07 to 0.86), La/Sc (0.31 to 11.05), Se/Th (0.28 to 1.06), V/Ni (1.14 to 3.97), Cr/V (1.4 to 28.3), Ni/Co (2.12 to 8.00) and Zr/Hf (22.6~45.1) in the shale and coal argue for inefficient mixing of the simple source lithologies during sedimentation. These rocks also show much variation in $La_N/Yb_N$ (1.36 to 21.68), Th/Yb (3.5 to 20.0) and La/Th (0.31 to 7.89), and their origin is explained by derivation from a mixture of mainly acidic igneous and metamorphic rocks. Average concentrations in the shale and coal are As=7.2 and 7.5, Ba=913 and 974, Cr=500 and 145, Cu=20 and 26, Ni=38 and 35, Pb=30 and 36, and Zn=77 and 92 ppm, respectively, which are similar to those in the NASC. Average enrichment indices for major elements in the shale (0.79) and coal (0.77) are lower than those in the NASC. In addition, average enrichment index for rare earth elements in coal (2.39) is enriched rather than the shale (1.55). On the basis of the NASC, concentrations of minor and/or environmental toxic elements in the shale and coal were depleted of all the elements examined, excepting Cr, Pb, Rb and Th. Average enrichment indices of trace and/or potentially toxic elements (As, Cr, Cu, Ni, Pb, U and Zn) are 1.23 to 1.24 for shale and 1.06 to 1.22 for coal, respectively.

  • PDF

Characterization of Size Distribution and Water Solubility of 15 Elements in Atmospheric Aerosols

  • Park, Jeong-Ho;Sun, Jeong-Min;Park, Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E1
    • /
    • pp.1-7
    • /
    • 2001
  • The elemental characteristics of atmospheric aerosols were investigated as a function of particle size and water solubility. The aerosol particles were samples at 12 individual size ranges between 0.01 and 30㎛. Collected aerosol particles were separated into both soluble and insoluble components. The concentrations of 15 elements in both components were determined by a PIXE analysis using a 2.0 MeV-proton beam. In general, the mass size distribution of particulate matter was represented as a bimodal distribution. The maximum rations of S in July and December were 5.5 and 3.8 %, and they appeared in the size range of 0.47∼1.17㎛(stage No. 6 or 7) . The ratios of a S at non-separated size were 3.1 and 2.2 % in July and December, respectively, On the other hand, the maximum rations of Si in July and December were 7.0 and 5.4% and they appeared in the size range of 5.1∼30㎛(stage No. 0∼2). The ratios of Si at the non-separated size were 2.1 and 1.8% in July and December, respectively, The mass diameter of 12 elements ranged between 0.59㎛ of S and 3.20 of Fe. More than 90% of atmospheric aerosols consisted of the light elements such as C, N, O, H and Al. The soluble component was dominant in the smaller size range and the insoluble component in the larger size range. Large portions of Si. Ti and Fe existed in insoluble state. By contrast, S, Cl, Ca, Zn and Br were dissolved in water.

Microstructure Orientation of Alumina Laminate Composites (알루미나 적층복합체의 미세구조 배향)

  • 박상엽;송준호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.351-359
    • /
    • 2001
  • 배향 입자층과 비배향 입자층이 상호적층된 알루미나 적층복합체를 연속 테입캐스팅 및 상압소결에 의해 제조하였다. 알루미나의 미세구조 배향을 위하여 알루미나 판상입자를 배향물질(template)로 사용하였으며, 알루미나의 입자배향 거동에 미치는 액상의 영향을 알아보기 위해 anorthite(CaAl$_2$Si$_4$O$_{8}$)를 첨가하였다. 적층체 내의 알루미나 입자배향을 X-선 회절법으로 분석한 결과 (006)면과 (1010)면으로 배향되어 있었다. 액상조성이 첨가되지 않은 경우와 비교시 anorthite를 첨가한 경우 입자배향층 내에는 액상으로 인한 큰 기공이 생성되었으며 배향도는 감소되었다. 그러나, 액상조성으로 anorthite가 첨가되어 입자배향이 이루어진 적층체 계면에서는 입자배향으로 인한 효과적인 균열전파 제어 거동이 관찰되었다.

  • PDF

Geologic Report on the Goobong Limestone Mine (구봉석회석광산의 지질조사보고(地質調査報告))

  • Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.3 no.1
    • /
    • pp.17-24
    • /
    • 1970
  • The purpose of this report is to prepare a data for the economic evaluation on the Goobong Limestone Mine which is located at the south-eastern corner of the Yongchun Quadrangle scaled in 1:50,000. The accessibility from the mine to railroad was considered in two ways. One is to Dodam Station on Central Railway Line and the other is to reach Songjung-ni village which is near Sangyong Station on Hamback Railway Line. The distance of the former way is 26.7km and the later is 24.2km. Geologically the mine is situated near the base of the Greast Limestone Series which strikes generally $N25^{\circ}{\sim}30^{\circ}E$. The series comprises six different formations from older to younger; Pungchon Limestone Formation and Whajol Formation of Cambrian age, and Dongjum Quartzite Formation, Dumudong Formation, Maggol Limestone Formation and Goseong Formation of lower to middle Ordovician age. 82 samples; 48 from Pungchon Limestone Formation, 11 from Dumudong Formation, 15 from Maggol Limestone Formation and 8 from Goseong Formation, were taken from the series in the crossed direction to the general trend of the series as shown in geological map. They were chemically analyzed on the components of CaO, MgO, $SiO_2$, $R_2O_3(Al_2O_3+Fe_2O_3)$ and ignition loss as shown in table 2, table 3, table 4, and table 5. As seen from the tables, among the formations of the series, middle to upper parts of the Pungchon Limestone Formation and middle and upper parts of the Dumudong Formation have chemical composition as available source for the raw material of cement industry, not only that but also the part of the Pungchon Formation was highly evaluated as source for the flux of iron smelting and the raw material of carbide manufacturing because of its high purity of calcium carbonate.

  • PDF

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.

Mineralogical Studies of the Tourmaline for Medicinal Applications by Production Localities (본초 광물로서의 활용을 위한 산지별 전기석의 광물학적 연구)

  • Jie, Yan;Kim, Seon-ok;Park, Hee Yul;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.51 no.4
    • /
    • pp.345-358
    • /
    • 2018
  • In this study, we have performed electron probe micro analyzer (EPMA), X-ray differaction (XRD), inductively coupled plasma spectroscopy (ICP), Fourier transform Raman spectroscopy (FT-Raman), far-infrared (FIR), nuclear magnetic resonance (NMR), and pH-DO Analyses for characterizing medicinal mineralogy aspect of the black tourmaline (Shantung, china), black and pink tourmaline (Minas Geraris, Brazil), black touemaline (Daeyu mine, Korea). In addition, heating effects of the tourmaline sauna as well as the effects of tourmaline powder-added soap on skin troubles have been investigated. It has been revealed that chemical composition of the tourmaline is either high in Fe-, Al-, B-rich types. Ratio of the K-Ca, Na-K, and Fe-B reflects the component change property of solid solution. $CaO/CaO+Na_2O$ and MgO/FeO+MgO ratio show high positive correlation. When tourmaline reacts with distilled water, extended reaction time DO values approximately decrease and it stabilizes at DO = 10. Otherwise, pH values increase until 6 hours and it stabilizes at pH = 8 after 24 hours. Distilled water changes to alkaline when it reacts with tourmaline powder and particles. Tourmaline showed lower absorption spectrum strength and transmittance at short wave, where absorption spectrum wavelength and strength were determined by the content of the composition elements and characteristics of crystallography. Increase of the Fe content has been confirmed to be the cause for the reduction of irradiation. For the chemical composition and spectral property of the tourmaline particle samples, it has been found that Si and Fe contents show positive correlation with Far-Infrared irradiation, while Al and Mg contents show negative correlation. For tourmaline powder, it has been confirmed that $^{17}O-NMR$ FWHM (full width at half maximum) decreases when reacts with distilled water. Tourmaline sauna (approximately $100^{\circ}C$) was found to increase $0.5-1.5^{\circ}C$ of body temperature, average of 12 heartbeat, and 10mg Hg of blood pressure. Tourmaline soap had very good aesthetic effect to skin and was confirmed to have above the average improvements to skin troubles (e.g., allergy or atopy).

A Study on Genesis of Alunite Deposits of Jeonnam Area (전남지역(全南地域) 명반석광상(明礬石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Moon, He Soo
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.183-201
    • /
    • 1975
  • The south and southwestern parts of Jeonra-namdo has been known as an alunite province in Korea. The alunite deposits investigated for the present study are Okmaisan, Seongsam, Bugog, Gasado south, Gasado north, Jangsando, Dogcheon and Jungyongri deposits. The main purpose of this study is to depict the genetical origin of the alunite deposits. The rocks distributed in the areas mentioned above consist chiefly of rhyolitic tuff, breccia tuff and andesitic tuff of Cretaceous age which represent different episodes of volcanic activities during Cretaceous epoch. The attitude of bedding of the tuffaceous rocks varies from place to place but generally dips very gently. The alunite deposits are embedded mostly in the rhyolitic tuff so that they appear as layered deposits, this occurrence may be the result of stratigraphic and lithologic controls. The result of this study can be summarized as below. The mineral sequence studied by the mineral paragenesis and the result of the spectrograph anlyses is such that (1) alunite was formed at first and pyrophyllite was nearly contemporaneous with alunite but pyrophyllite formation can be recognized as a secondary mineralization products, (2) kaoline was succeeded to form later and hematite finally deposited, and (3) pyrite was deposited from the begining to the end of the above mineralization period. The compositional change of host rocks is such that CaO, $SiO_2$ and $Na_2O$ were largely removed from the parent rocks and some $Al_2O_3$ and $SO_3$ were transported by the solution so as to enrich the rocks. The sequencial process of such mineralization has resulted in forming those distinguish mineral zones; alunite, kaoline, pyrophyllite, silicifide and sulphide zone which manifest irregular shape. These deposits were formed by hydrothermal solution which was possibly low temperature and contained sulphuric acid originated from $H_2S$ and $SO_2$ gases.

  • PDF

Geochemical Characteristics of Stream Sediments Based on Bed Rocks in the Cheongpung Area (기반암에 따른 청풍지역 하상퇴적물의 지구화학적 특성)

  • Park, Young-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Song, Yeung-Sang;Lee, Jang-Jon
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.675-687
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics of the stream sediments in the Cheongpung area. So that we can understand the natural background and predict the prospects of geochemical disaster, if any. We collected the stream sediments samples by wet sieving along the primary channels and slow dried the collected samples in the laboratory and ground them to pass a 200 mesh using an alumina mortar and pestle for chemical analysis. Miner-alogical characteristics, major, trace and rare earth elements were determined by XRD, XRF, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological group of stream sediments, the studied area was grouped into granitic gneiss area, metatectic gneiss area, Dado tuff area, Yuchi conglomerate area, and Neungju flow area in the Cheongpung area. Contents of major elements for the stream sediments in the Cheongpung area were $SiO_2\;47.31{\sim}72.81\;wt.%,\;A1_2O_3 \;11.26{\sim}21.88\;wt.%,\;Fe_2O_3\;2.83{\sim}8.39\;wt.%,\;CaO\;0.34{\sim}7.54\;wt.%,\;MgO\; 0.55{\sim}3.59\;wt.%,\;K_2O\;1.71{\sim}4.31\;wt.%,\;Na_2O\;0.56{\sim}2.28\;wt.%,\;TiO_2\;0.46{\sim}1.24\;wt.%,\;MnO\;0.04{\sim}0.27\;wt.%,\;P_2O_5\;0.02{\sim}0.45\;wt.%$. The con-tents of trace and rare earth elements for the stream sediments were $Ba\;700ppm{\sim}8990ppm,\;Be\;1.0{\sim}3.50ppm,\;Cu\;6.20{\sim}60ppm,\;Nb\;12{\sim}28ppm,\;Ni\;4.4{\sim}61ppm,\;Pb\;13{\sim}34ppm,\;Sr\;65{\sim}787ppm,\;V\;4{\sim}98ppm,\;Zr\;32{\sim}164ppm,\;Li\;21{\sim}827ppm,\;Co\;3.68{\sim}65ppm,\;Cr\;16.7{\sim}409ppm,\;Cs\;2.72{\sim}37.1ppm,\;Hf\;4.99{\sim}49.2ppm,\;Rb\;71.9{\sim}649ppm,\;Sb\;0.16{\sim}5.03ppm,\;Sc\;4.97{\sim}52ppm,\;Zn\;26.3{\sim}375ppm,\;Ce\;60.6{\sim}373ppm,\;Eu\;0.82{\sim}6ppm,\;Yb\;0.71{\sim}10ppm$.