• Title/Summary/Keyword: $Ca^{2+}$influx

Search Result 316, Processing Time 0.027 seconds

Effects of C18 Fatty Acids on Intracellular $Ca^{2+}$ Mobilization and Histamine Release in RBL-2H3 Cells

  • Kim, Myung Chul;Kim, Min Gyu;Jo, Young Soo;Song, Ho Sun;Eom, Tae In;Sim, Sang Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.3
    • /
    • pp.241-247
    • /
    • 2014
  • To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and ${\alpha}$-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular $Ca^{2+}$ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular $Ca^{2+}$ mobilization, whereas linoleic acid and ${\alpha}$-linolenic acid gradually increased this mobilization. In the absence of extracellular $Ca^{2+}$, stearic acid ($100{\mu}M$) did not cause any increase of intracellular $Ca^{2+}$ mobilization. Both linoleic acid and ${\alpha}$-linolenic acid increased intracellular $Ca^{2+}$ mobilization, but the increase was smaller than that in the presence of extracellular $Ca^{2+}$. These results suggest that C18 fatty acid-induced intracellular $Ca^{2+}$ mobilization is mainly dependent on extracellular $Ca^{2+}$ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular $Ca^{2+}$ mobilization, but did not affect both linoleic acid- and ${\alpha}$-linolenic acid-induced intracellular $Ca^{2+}$ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and ${\alpha}$-linolenic acid on intracellular $Ca^{2+}$ mobilization may differ. Linoleic acid and ${\alpha}$-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: ${\omega}$-6)-induced intracellular $Ca^{2+}$ mobilization and histamine release were more prominent than ${\alpha}$-linolenic acid (C18:3: ${\omega}$-3). These data support the view that the intake of more ${\alpha}$-linolenic acid than linoleic acid is useful in preventing inflammation.

Buffering Contribution of Mitochondria to the $[Ca^{2+}]_i$ Increase by $Ca^{2+}$ Influx through Background Nonselective Cation Channels in Rabbit Aortic Endothelial Cells

  • Kim, Young-Chul;Lee, Sang-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.29-35
    • /
    • 2005
  • To prove the buffering contribution of mitochondria to the increase of intracellular $Ca^{2+}$ level ($[Ca^{2+}]_i$) via background nonselective cation channel (background NSCC), we examined whether inhibition of mitochondria by protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP) affects endothelial $Ca^{2+}$ entry and $Ca^{2+}$ buffering in freshly isolated rabbit aortic endothelial cells (RAECs). The ratio of fluorescence by fura-2 AM ($R_{340/380}$) was measured in RAECs. Biological state was checked by application of acetylcholine (ACh) and ACh ($10{\mu}M$) increased $R_{340/380}$ by $1.1{\pm}0.15$ ($mean{\pm}S.E.$, n=6). When the external $Na^+$ was totally replaced by $NMDG^+$, $R_{340/380}$ was increased by $1.19{\pm}0.17$ in a reversible manner (n=27). $NMDG^+$-induced $[Ca^{2+}]_i$ increase was followed by oscillatory decay after $[Ca^{2+}]_i$ reached the peak level. The increase of $[Ca^{2+}]_i$ by $NMDG^+$ was completely suppressed by replacement with $Cs^+$. When $1{\mu}M$ CCCP was applied to bath solution, the ratio of $[Ca^{2+}]_i$ was increased by $0.4{\pm}0.06$ (n=31). When $1{\mu}M$ CCCP was used for pretreatment before application of $NMDG^+$, oscillatory decay of $[Ca^{2+}]_i$ by $NMDG^+$ was significantly inhibited compared to the control (p<0.05). In addition, $NMDG^+-induced$ increase of $[Ca^{2+}]_i$ was highly enhanced by pretreatment with $2{\mu}M$ CCCP by $320{\pm}93.7$%, compared to the control ($mean{\pm}S.E.$, n=12). From these results, it is concluded that mitochondria might have buffering contribution to the $[Ca^{2+}]_i$ increase through regulation of the background NSCC in RAECs.

Role of Calcium and Calcium Channels in Progesterone Induced Acrosome Reaction in Caprine Spermatozoa

  • Somanath, P.R.;Gandhi, K.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.949-956
    • /
    • 2002
  • There are several physiological and pharmacological evidences indicating that opening of voltage dependent $Ca^{2+}$ channels play a critical role in induction of acrosome reaction in mammalian sperm. We determined the intracellular free $Ca^{2+}$ concentration in ejaculated goat sperm using a fluorescent, $Ca^{2+}$-specific probe, Fura2/AM, after the suspension of sperm in KRB medium, capable of sustaining capacitation and the acrosome reaction. We used nifedipine, D-600 and diltiazem, the $Ca^{2+}$ channel antagonists belonging to the classes of dihydropyridines, phenylalkylamines and benzothiazepines, to investigate the possibility that L-type voltage gated $Ca^{2+}$ channels play a role in the progesterone-stimulated exocytotic response. Progesterone promoted a rise in intracellular $Ca^{2+}$ in goat sperm and addition of nifedipine (100 nM) just prior to progesterone induction, significantly inhibited both intracellular $Ca^{2+}$ rise and exocytosis suggesting that $Ca^{2+}$ channels are involved in the process. However, the intracellular $Ca^{2+}$ increase during the process of capacitation was not affected with the addition of nifedipine suggesting a role of focal channel for $Ca^{2+}$ during capacitation. Studies using monensin and nigericin, two monovalent cation ionophores showed that an influx of $Na^+$ also may play a role in the opening of $Ca^{2+}$ channels. These results strongly suggests that the entry of $Ca^{2+}$ channels with characteristics similar to those of L-type, voltage-sensitive $Ca^{2+}$ channels found in cardiac and skeletal muscle, is a crucial step in the sequence of events leading to progesterone induced acrosome reaction in goat sperm.

17 beta-Estradiol Increases Peak of $\textrm{Ca}^{2+}$ Current in Mouse Early Embryo (에스트로겐이 생쥐 초기배의 $\textrm{Ca}^{2+}$ 전류에 미치는 영향)

  • 강다원;신용원;김은심;홍성근;한재희
    • Journal of Embryo Transfer
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2001
  • Steroid hormones control the expression of many cellular regulators, and a role thor estrogen in mouse oocytes has been well documented. The preovulatory $E_2$increment is generally accepted as the endocrine process regulating induction of in vivo oocyte maturation To address whether the activity of the T-type $Ca^{2+}$ channel is altered by 17 beta-estradiol ( $E_2$), we examined the actions of $E_2$on the calcium channel of mouse oocytes and early embryos. Oocrtes were collected from the oviduct of mice treated with pregnant mare's serum gonadotropin (PMSG) and human choronic gonadotropin (hCG). Whole cell voltage clamp technique and confocal microscopy were used to examine that $E_2$increase intracellular $Ca^{2+}$ concentration ([C $a^{2+}$]$_{i}$ ) via voltage dependent $Ca^{2+}$ channel (VDC) and estrogen receptor (FSR), and $E_2$concentration by the use of radioimmunoassay (RIA) were examined in mouse. The results obtained were as follows: The peak of $Ca^{2+}$ current induced by $E_2$increased 122% to 1.50$\pm$0.03 nA from 1.23$\pm$0.21 nA (n=15) in the presence of 5 mM extracellular $Ca^{2+}$ concentration ([C $a^{2+}$]$_{o}$ ). The increased $Ca^{2+}$ current was temporally associated with $Ca^{2+}$ transients. The intracellular $Ca^{2+}$ level increased 207%~30 s following the addition of 1${\mu}{\textrm}{m}$ $E_2$(relative fluorescence intensity: 836.4$\pm$131.2 for control, n=10, 1736.4$\pm$192.0 in the presence of $E_2$, n=10). $E_2$increased amplitude of $Ca^{2+}$ current and [C $a^{2+}$]$_{i}$ . $E_2$-induced $Ca^{2+}$ current and $E_2$concentration in blood were showed difference on the stage of embryo. These results suggest that $E_2$modulate $Ca^{2+}$ channel to increase $Ca^{2+}$ influx.$Ca^{2+}$ influx.

  • PDF

Regional Differences in Voltage-tension Relationship of Gastric Smooth Muscles in Guinea-pig (위 평활근의 부위별 전압-장력 관계에 관한 연구)

  • Kim, Ki-Whan;Lee, Sang-Jin;Suh, Suk-Hyo
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.263-275
    • /
    • 1989
  • Mechanical contractions and electrical activities of the fundic longitudinal and antral circular muscle fibers were investigated in order to elucidate topical differences of gastric motility. K-induced contracture was produced by exposure of muscle strips to high K Tyrode solution. Membrane potential and mechanical contraction were simultaneously recorded by conventional glass microelectrode method and single sucrose-gap technique. All experiments were performed in tris-buffered Tyrode solution which was aerated with $100%\;O_2\;and\;kept\;35^{\circ}C$. The results obtained were as follows: 1) The resting membrane potential of circular muscle cells in the antral region was about 10 mV more negative than that in the fundic region. 2) The membrane potentials decreased almost linearly as the extracellular KCI concentration was increased both in antral circular muscle cells and in fundic longitudinal muscle cells. 3) The thresholdal K concentration of K-contracture was 15 mM (membrane potential, -48 mV) for the antral circular muscle strip and 20 mM for the fundic longitudinal muscle cells. 4) The ratio of membrane permeability coefficient for $Na^+\;and\;K^+,\;P_{Na}/P_K\;({\alpha})$ was 0.065 for antral circular muscle cells and was 0.108 for fundic longitudinal muscle cells. 5) K-contracture of antral and fundic smooth muscle strips showed the contracture composed of phasic and tonic components. The amplitude of the phasic component increased sigmoidally in a dose-dependent manner, whereas that of the tonic component was maximal at a concentration of 40 mM KCI and at the concentrations above or below 40 mM KCI the amplitude was reduced. 6) The inverse relationship between the amplitude of tonic component and extracellular KCI concentration in the range of 40 to 150 mM KCI was more prominent in the antral circular muscle strip than in the fundic longitudinal muscle strip, where the amplitude of the tonic component decreased less steeply and was maintained higher at the same high K concentrations. 7) The tonic component was totally dependent on the external $Ca^{2+}$ and completely abolished by verapamil, while tile phasic component was far less dependent on the external $Ca^{2+}$ and partially suppressed by verapamil. From the above results, the following conclusions could be made. 1) The phasic component of K-contracture is produced both by intracellular $Ca^{2+}$ mobilization and by $Ca^{2+}$-influx from outside, while the tonic component is generated and maintained by the $Ca^{2+}-influx$ through the potential-dependent $Ca^{2+}$ channel. 2) The mechanism of reducing the free $Ca^{2+}$ concentration in the myoplasm seems to be more developed in the antral circular muscle than in the fundic longitudinal muscle. 3) The lower resting membrane potential of the fundic longitudinal muscle cell reflects a relatively high $P_{Na}/P_K$ ratio of about 0.108.

  • PDF

Alteration of Cytosolic Ca$^{2+}$ Signal by Cryopreservation in Pig Sperm (동결 보존에 의한 돼지 정자 세포질 칼슘 신호의 변화)

  • Lee, Sun-Woo;Li, Yu-Hua;Kim, Joon-Chul;Myung, Pyung-Keun;Park, Chang-Sik;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Although mammalian sperms are cryopreserved for in vitro fertilization a process of cryopreservation decreases the fertility. Acrosome reaction requires depolarization-induced Ca$^{2+}$ influx and Ca$^{2+}$ releases from the Ca$^{2+}$ stores. To examine whether the cellular Ca$^{2+}$ mobilization is altered by a sperm cryopreservation we compared cytosolic Ca$^{2+}$ signals between fresh and cryopreserved pig sperms using confocal Ca$^{2+}$ imaging. The magnitudes of depolarization induced Ca$^{2+}$ increases were significantly smaller in cryopreserved sperms. Exposures to 10 mM caffeine or 5 ${\mu}$M thapsigargin elicited less Ca$^{2+}$ increases in the cryopreserved sperms compared to fresh sperms. In addition, progesterone-trig-gered Ca$^{2+}$ rises, that are thought to enhance acrosome reaction, were completely abolished in the cryopreserved sperms. These results suggest that storage and(/or) release of Ca$^{2+}$ from the intracellular Ca$^{2+}$ stores in pig sperms are significantly impaired by the process of cryopreservation.

Relaxation Effects of Rubus coreanus in Isolated Rabbit Corpus Cavernosum Smooth Muscle (복분자(覆盆子)의 토끼 음경해면체 평활근 이완효과)

  • Park, Sun Young;Lee, Pyeng Jae;Shin, Seon Mi;Kim, Ho Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.400-408
    • /
    • 2013
  • This study aimed to investigate the relaxation effects and its underlying mechanisms of Rubus coreanus(RC) extract in contracted rabbit corpus cavernous tissues by phenylephrine(PE) $1{\mu}M$. In order to define the relaxation effects of RC, rabbit corpus cavernous tissues were prepared in $2{\times}2{\times}6mm$ sized strip. The dose-dependent relaxation responses of RC at 0.01-3.0 $mg/m{\ell}$ in contracted strips induced by PE were measured and also observed after endothelial denudation. To analyze the underlying mechanisms of RC-induced relaxation, indomethacin(IM), tetraethylammonium chloride(TEA), $N{\omega}$-nitro-L-arginine (L-NNA), methylene blue(MB) were treated before RC extract infused into precontracted strips induced by PE. To study the effect of RC extract on influx of extracellular $Ca^{2+}$ in corpus cavernous strips, calcium chloride(Ca) 1 mM infused into precontracted strips induced by PE after pretreatment of RC extract in $Ca^{2+}$-free krebs-ringer solution. To investigate cytotoxic activity and nitric oxide(NO) concentration of RC extract on human umbilical vein endothelial cell(HUVEC), cell viability on HUVEC was measured by MTT assay, and NO concentration was measured by Griess reagent system. The cavernous strips were significantly relaxed by RC extract at 1.0 $mg/m{\ell}$, 3.0 $mg/m{\ell}$ and the relaxation responses to RC were inhibited significantly by endothelial disruption. The pretreatment of IM, TEA didn't affect RC extract-induced endothelium-dependent relaxation, but the pretreatment of L-NNA, MB reduced RC extract-induced endothelium-dependent relaxation. When $Ca^{2+}$ was supplied the cavernous strips which were precontracted by PE in a $Ca^{2+}$-free krebs-ringer solution, contraction of strips was increased, but pretreatment of RC inhibited contractile response to $Ca^{2+}$. When RC extract was applicated on HUVEC, NO concentration was increased. Our findings show that RC extract exerts a relaxing effect on corpus cavernosum in part by suppressing influx of extracellular $Ca^{2+}$ through activating the NO-cGMP system.

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Cardiovascular Effects of Gentamicin Administration in Rats (흰쥐에서 Gentamicin 투여가 심혈관계에 미치는 영향)

  • 김상진;강형섭;백삼권;박상열;김인식;김남수;김진상
    • Journal of Veterinary Clinics
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 2004
  • Aminoglycosidic antibiotics have multiple effects on muscle. For example, they have been shown to block L-type $Ca^{2+}$ channels in vascular smooth muscle, cardiac muscle and skeletal muscle. Possibly as a consequence of this effect on $Ca^{2+}$ influx, they have been shown to decrease the contractility of cardiac muscle (gentamicin). The present study evaluated the effects of gentamicin on blood pressure, vasorelaxation and left ventricular pressure. Gentamicin(10, 20, 40mg/kg) produced dose-dependent blood pressure lowering in rat. The pretreatment of MgSO$_4$ and imipramine (Na$^{+}$-Mg$^{2+}$ exchange inhibitor) had no effect in gentamicin-induced hypotension. However, the gentamicin-induced hypotension was significantly potentiated in the preincubation of verapamil or nifedipine (L-type $Ca^{2+}$ channel blockers), and was significantly attenuated by CaCl$_2$ and was slightly attenuated by caffeine (phosphodiesterase inhibitor). Gentamicin (10, 30, 100$\mu$g/m1) did not have an effect on relaxation of phenylephrine-precontracted aortic rings but high concentration of gentamicin(100, 300$\mu$g/ml) relaxed KCl-precontracted aortic rings, which relaxation was potentiated by treatment of nifedipine. Whereas gentamicin markedly decreased left ventricular developed pressure (LVDP) in perfused heart. These data suggest that gentamicin has significant blood pressure lowering of the rat, which seems to be mediated by calcium channel-sensitive pathway and blood $Ca^{2+}$ level may be important role in this response.

Cell Signaling Mechanisms of Sperm Motility in Aquatic Species

  • Kho, Kang-Hee;Morisawa, Masaaki;Cho, Kap-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.665-671
    • /
    • 2005
  • Initiation and activation of sperm motility are prerequisite processes for the contact and fusion of male and female gametes at fertilization. The phenomena are under the regulation of cAMP and $Ca^{2+}$ in vertebrates and invertebrates. Mammalian sperm requires $Ca^{2+}$ and cAMP for the activation of sperm motility. Cell signaling for the initiation and activation of sperm motility in the ascidians and salmonid fishes has drawn much attention. In the ascidians, the sperm-activating and attracting factors from unfertilized egg require extracellular $Ca^{2+}$ for activating sperm motility and eliciting chemotactic behavior toward the egg. On the other hand, the cAMP-dependent phosphorylation of protein is essential for the initiation of sperm motility in salmonid fishes. A decrease of the environmental $K^+$ concentration surrounding the spawned sperm causes $K^+$ efflux and $Ca^{2+}$ influx through the specific $K^+$ channel and dihydropyridine-sensitive L-/T-type $Ca^{2+}$ channel, respectively, thereby leading to the membrane hyperpolarization. The membrane hyperpolarization induces synthesis of cAMP, which triggers further cell signaling processes, such as cAMP-dependent protein phosphorylation, to initiate sperm motility in salmonid fishes. This article reviews the studies on the physiological mechanisms of sperm motility and its cell signaling in aquatic species.