• 제목/요약/키워드: $Ca^{2+}$-induced $Ca^{2+}$ release

검색결과 301건 처리시간 0.025초

The change of signaling pathway on the electrical stimulated contraction in streptozotocin-induced bladder dysfunction of rats

  • Han, Jong Soo;Min, Young Sil;Kim, Gil Hyung;Chae, Sang-hyun;Nam, Yoonjin;Lee, Jaehwi;Lee, Seok-Yong;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.577-584
    • /
    • 2018
  • Bladder dysfunction is a common complication of diabetes mellitus (DM). However, there have been a few studies evaluating bladder smooth muscle contraction in DM in the presence of pharmacological inhibitors. In the present study, we compared the contractility of bladder smooth muscle from normal rats and DM rats. Furthermore, we utilized pharmacological inhibitors to delineate the mechanisms underlying bladder muscle differences between normal and DM rats. DM was established in 14 days after using a single injection of streptozotocin (65 mg/kg, intraperitoneal) in Sprague-Dawley rats. Bladder smooth muscle contraction was induced electrically using electrical field stimulation consisting of pulse trains at an amplitude of 40 V and pulse duration of 1 ms at frequencies of 2-10 Hz. In this study, the pharmacological inhibitors atropine (muscarinic receptor antagonist), U73122 (phospholipase C inhibitor), DPCPX (adenosine $A_1$ receptor antagonist), udenafil (PDE5 inhibitor), prazosin (${\alpha}_1$-receptor antagonist), verapamil (calcium channel blocker), and chelerythrine (protein kinase C inhibitor) were used to pretreat bladder smooth muscles. It was found that the contractility of bladder smooth muscles from DM rats was lower than that of normal rats. In addition, there were significant differences in percent change of contractility between normal and DM rats following pretreatment with prazosin, udenafil, verapamil, and U73122. In conclusion, we suggest that the decreased bladder muscle contractility in DM rats was a result of perturbations in $PLC/IP_3$-mediated intracellular $Ca^{2+}$ release and PDE5 activity.

The Inhibitory Mechanism on Acetylcholine-Induced Contraction of Bladder Smooth Muscle in the Streptozotocin-Induced Diabetic Rat

  • Han, Jong Soo;Kim, Su Jin;Nam, Yoonjin;Lee, Hak Yeong;Kim, Geon Min;Kim, Dong Min;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.101-106
    • /
    • 2019
  • Most diabetic patients experience diabetic mellitus (DM) urinary bladder dysfunction. A number of studies evaluate bladder smooth muscle contraction in DM. In this study, we evaluated the change of bladder smooth muscle contraction between normal rats and DM rats. Furthermore, we used pharmacological inhibitors to determine the differences in the signaling pathways between normal and DM rats. Rats in the DM group received an intraperitoneal injection of 65 mg/kg streptozotocin and measured blood glucose level after 14 days to confirm DM. Bladder smooth muscle contraction was induced using acetylcholine (ACh, $10^{-4}M$). The materials such as, atropine (a muscarinic receptor antagonist), U73122 (a phospholipase C inhibitor), DPCPX (an adenosine $A_1$ receptor antagonist), udenafil (a PDE5 inhibitor), prazosin (an ${\alpha}_1$-receptor antagonist), papaverine (a smooth muscle relaxant), verapamil (a calcium channel blocker), and chelerythrine (a protein kinase C inhibitor) were pre-treated in bladder smooth muscle. We found that the DM rats had lower bladder smooth muscle contractility than normal rats. When prazosin, udenafil, verapamil, and U73122 were pre-treated, there were significant differences between normal and DM rats. Taken together, it was concluded that the change of intracellular $Ca^{2+}$ release mediated by PLC/IP3 and PDE5 activity were responsible for decreased bladder smooth muscle contractility in DM rats.

생약추출물이 Intrerleukin-1 ${\beta}$의 생성 및 활성에 미치는 영향 (THE EFFECTS OF HERBAL EXTRACTS ON PRODUCTION AND ACTIVlTY OF INTERLEUKIN 1${\beta}$)

  • 조기영;이용무;최상묵;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.386-396
    • /
    • 1995
  • Interieukin 1${\beta}$ is a potent bone resorptive cytokine which mediates soft tissue destruction through the stimulatidn of prostaglandin production and the induction of collagenase. This constellation of activities suggests a role of IL-1${\beta}$ in the pathogenesis of periodontal disease. The purpose of this study was to evaluate the effects of herbal extracts on production and activity of IL-1${\beta}$. When LPS was added to cultured human blood monocytes, the effects of herbal extracts on the production of IL-1${\beta}$ was evaluate by thymocyte stimulation assay. When rHuIL-1${\beta}$ was added to cultured human gingival fibroblasts, the effects of herbal extracts on production of $PGE_2$ was evaluated by ELISA and when it was added to cultured mouse calvaria, the effects on bone resorption was estimated by .$^{45}Ca$-release bone resorption assay. The herbal extracts that had been used in this study were as follows; Asparagi Radix, Schzandrae Fractus, Zizyphi Fractus and Rhois Galla. The following results were obtained from this study. 1. All these extracts effectively inhibited the production of IL-1${\beta}$ on cultured human blood monocytes. 2. All these extracts effectively inibited the production of $PGE_2$ on cultured human gingival fibroblasts. 3. All these extracts did not effectively inhibit the bone resorption induced by rHulL-1${\beta}$ on cultured mouse calvaria.

  • PDF

Effects of a gintonin-enriched fraction on hair growth: an in vitro and in vivo study

  • Lee, Na-Eun;Park, Sang-Deuk;Hwang, Hongik;Choi, Sun-Hye;Lee, Ra Mi;Nam, Sung Min;Choi, Jong Hee;Rhim, Hyewhon;Cho, Ik-Hyun;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.168-177
    • /
    • 2020
  • Background: Ginseng has been widely used as a health-promoting tonic. Gintonin present in ginseng acts as a lysophosphatidic acid (LPA) receptor ligand that activates six LPA receptor subtypes. The LPA6 subtype plays a key role in normal hair growth, and mutations in the LPA6 receptor impair normal human hair growth. Currently, human hair loss and alopecia are concerning issues that affect peoples' social and day-to-day lives. Objective: We investigated the in vitro and in vivo effects of a gintonin-enriched fraction (GEF) on mouse hair growth. Methods: Human hair follicle dermal papilla cells (HFDPCs) and six-week-old male C57BL/6 mice were used. The mice were divided into the four groups: control, 1% minoxidil, 0.75% GEF, and 1.5% GEF. The dorsal hair was removed to synchronize the telogen phase. Each group was treated topically, once a day, for 15 days. We analyzed hair growth activity and histological changes. Results: GEF induced transient [Ca2+]i, which stimulated HFDPC proliferation and caused 5-bromo-2'-deoxyuridine (BrdU) incorporation in a concentration-dependent manner. GEF-mediated HFDPC proliferation was blocked by the LPA receptor antagonist and Ca2+ chelator. HFDPC treatment with GEF stimulated vascular endothelial growth factor release. Topical application of GEF and minoxidil promoted hair growth in a dose-dependent manner. Histological analysis showed that GEF and minoxidil increased the number of hair follicles and hair weight. Conclusion: Topical application of GEF promotes mouse hair growth through HFDPC proliferation. GEF could be one of the main components of ginseng that promote hair growth and could be used to treat human alopecia.

The Action of Ginkgo Bibloba Extract in the Isolated Rabbit Corpus Cavernosum

  • Chung, Woo-Sik;Choi, Young-Deuk;Park, Young-Yo;Hah, Jong-Sik
    • The Korean Journal of Physiology
    • /
    • 제29권1호
    • /
    • pp.61-67
    • /
    • 1995
  • The extract of Ginkgo bibloba (EGb) is a complex mixture of natural products from the Ginkgo leaves and clinically used for the treatment of cerebral and peripheral circulatory disturbances due to its combined activity of several vasoactive principles. In this study we investigated the action of EGb and its mechanism in isolated rabbit corporal smooth muscle to evaluate the possibility of using this material as a pharmacoerecting agent. Strips of rabbit corpus cavernosum were mounted in organ chambers to measure isometric tension. EGb began to exert an relaxing effect at 1 mg/ml in the submaximally precontracted muscle strips with phenylephrine $(PHE,\;5{\times}10^{-6}\;M)$; causing concentration-dependent relaxation with maximal effect at $3{\sim}5\;mg/ml$. That relaxation was partially inhibited by removal of the smooth muscle endothelium or by pretreatment with a NO scavenger, pyrogallol $(10^{-4}\;M)$ or the guanylate cyclase inhibitor, methylene blue $(10^{-4}\;M)$. Pretreatment with EGb (3 mg/ml) inhibited PHE- $(5{\times}10^{-6}\;M)$ or KCI- (20 and 40 mM) induced contraction of muscle strip. In calcium-free high potassium solution EGb depressed the basal tone of the depolarized muscle strip and inhibited calcium-induced contraction when $CaCl_2$ $(10^{-4}\;M)$ was added. These results suggest that EGb relaxes rabbit corpus cavernosal smooth muscle through multiple action mechanisms that include increasing the release of nitric oxide from the corporal sinusoidal endothelium, sequestration of intracytosolic calcium, and maybe a hyperpolarizing action.

  • PDF

냉각유도젤화에 의한 엽산 함유 분리유청단백 나노담체의 제조 (Preparation of Folic Acid-loaded WPI (Whey Protein Isolate) Nanoparticles by Cold-induced Gelation)

  • 김범근;이원재;오세종;김진만;박동준
    • 한국축산식품학회지
    • /
    • 제30권1호
    • /
    • pp.95-101
    • /
    • 2010
  • 냉각유도젤화(cold-induced gelation) 기술을 이용하여 제조한 엽산 함유 유청단백질 나노담체에 대하여 실험적 변수, 즉, 고분자의 종류, 분리유청단백 용액의 농도 및 pH, 수용액층(aqueous phase)과 유기용매층(organic phase)의 비율, 분리유청단백 용액의 열처리 온도 등에 따른 입도 및 용출 양상의 변화를 고찰하였다. 고분자의 경우 알긴산을 이용하였을 때 가장 작은 입도를 나타내었으며, kcarrageenan의 경우 가장 큰 입도를 나타내었다. 수용액층과 유기용매층의 비율의 경우 그 값이 감소할수록 낮은 평균입도를 나타내었다. 분리유청단백 용액의 농도는 1%, pH는 8.0, 열처리 온도는 $80^{\circ}C$일 때 가장 작은 입자경 (<330 nm)을 나타내었다. 용출시험 결과, pH 7.4에서 2시간 이내에 대부분의 포집된 엽산이 용출된 반면, pH 1.2에서는 6시간 이상 용출이 지연되는 것을 확인하였다. 이와 같은 결과는 냉각유도젤화에 의해 나노담체를 제조하는 경우 실험적 변수들이 나노담체의 특성에 큰 영향을 미치는 것을 의미한다.

Computational Analysis on Calcium Dynamics of Vascular Endothelial Cell Modulated by Physiological Shear Stress

  • Kang, Hyun-Goo;Lee, Eun-Seok;Shim, Eun-Bo;Chnag, Keun-Shik
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제3권2호
    • /
    • pp.1-9
    • /
    • 2005
  • Flow-induced dilation of blood vessel is the result of a series of bioreaction in vascular endothelial cells(VEC). Shear stress change by blood flow in human artery or vein is sensed by the mechanoreceptor and responsible for such a chain reaction. The inositol(1,4,5)-triphophate($IP_3$) is produced in the first stage to elevate permeability of the intercellular membrane to calcium ions by which the cytosolic calcium concentration is consequently increased. This intracellular calcium transient triggers synthesis of EDRF and prostacyclin. The mathematical model of this VEC calcium dynamics is reproduced from the literature. We then use the Computational Fluid Dynamics(CFD) technique to investigate the blood stream dictating the VEC calcium dynamics. The pulsatile blood flow in a stenosed blood vessel is considered here as a part of study on thrombogenesis. We calculate the pulsating shear stress (thus its temporal change) distributed over the stenosed artery that is implemented to the VEC calcium dynamics model. It has been found that the pulsatile shear stress induces larger intracellular $Ca^{2+}$ transient plus much higher amount of EDRF and prostacyclin release in comparison with the steady shear stress case. It is concluded that pulsatility of the physiological shear stress is important to keep the vasodilation function in the stenosed part of the blood vessel.

  • PDF

INITIAL ESTIMATION OF THE RADIONUCLIDES IN THE SOIL AROUND THE 100 MEV PROTON ACCELERATOR FACILITY OF PEFP

  • An, So-Hyun;Lee, Young-Ouk;Cho, Young-Sik;Lee, Cheol-Woo
    • Nuclear Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.747-752
    • /
    • 2007
  • The Proton Engineering Frontier Project (PEFP) has designed and developed a proton linear accelerator facility operating at 100 MeV - 20 mA. The radiological effects of such a nuclear facility on the environment are important in terms of radiation safety. This study estimated the production rates of radionuclides in the soil around the accelerator facility using MCNPX. The groundwater migration of the radioisotopes was also calculated using the Concentration Model. Several spallation reactions have occurred due to leaked neutrons, leading to the release of various radionuclides into the soil. The total activity of the induced radionuclides is approximately $2.98{\times}10^{-4}Bq/cm^3$ at the point of saturation. $^{45}Ca$ had the highest production rate with a specific activity of $1.78{\times}10^{-4}Bq/cm^3$ over the course of one year. $^3H$ and $^{22}Na$ are usually considered the most important radioisotopes at nuclear facilities. However, only a small amount of tritium was produced around this facility, as the energy of most neutrons is below the threshold of the predominant reactions for producing tritium: $^{16}O(n,\;X)^3H$ and $^{28}Si(n,X)^3H$ (approximately 20 MeV). The dose level of drinking water from $^{22}Na$ was $1.48{\times}10^{-5}$ pCi/ml/yr, which was less than the annual intake limit in the regulations.

Cooperation of $G{\beta}$ and $G_{\alpha}q$ Protein in Contractile Response of Cat Lower Esophageal Sphincter (LES)

  • Sohn, Uy-Dong;Lee, Tai-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.349-355
    • /
    • 2003
  • We previously shown that LES contraction depends on $M_3$ receptors linked to PTX insensitive $G_q$ protein and activation of PLC. This results in production of $IP_3$, which mediates calcium release, and contraction through a CaM dependent pathway. In the esophagus ACh activates $M_2$ receptors linked to PTX sensitive $G_{i3}$ protein, resulting in activation of PLD, presumably, production of DAG. We investigated the role of PLC isozymes which can be activated by $G_q$ or $G{\beta}$ protein on ACh-induced contraction in LES and esophagus. Immunoblot analysis showed the presence of 3 types of PLC isozymes, $PLC-{\beta}1$, $PLC-{\beta}3$, and $PLC-{\gamma}1$, but not $PLC-{\beta}2$, $PLC-{\beta}4$, $PLC-{\gamma}2$, $PLC-{\delta}1$, and $PLC-{\delta}2$ from both LES and esophageal muscle. ACh produced contraction in a dose dependent manner in LES and esophageal muscle cells obtained by enzymatic digestion with collagenase. $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody incubation reduced contraction in response to ACh in LES but not in esophageal permeabilized cells, but $PLC-{\gamma}1$ antibody incubation did not have an inhibitory effect. The inhibition by $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody on Ach-induced contraction was antibody concentration dependent. The combination with $PLC-{\beta}_1$ and $PLC-{\beta}_3$ antibody completely abolished the contraction, suggesting that $PLC-{\beta}1$ and $PLC-{\beta}3$ have a synergism to inhibit the contraction in LES. $PLC-{\beta}1$, -${\beta}3$ or -${\gamma}1$ antibody did not reduce the contraction of LES cells in response to DAG ($10^{-6}$ M), suggesting that this isozyme of PLC may not activate PKC. When $G_{q/11}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}3$, but not of PLC ${\beta}_1$ was additive (Fig. 6). In contrast, when $G_{\beta}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}_1$, but not of PLC ${\beta}_3$ was additive. This data suggest that $G_{q/11}$/11 or $G{\beta}$ may activate cooperatively different PLC isozyme, $PLC{\beta}_1$ or $PLC{\beta}_3$ respectively.

A novel protocol for batch-separating gintonin-enriched, polysaccharide-enriched, and crude ginsenoside-containing fractions from Panax ginseng

  • Rami Lee;Han-Sung Cho;Ji-Hun Kim;Hee-Jung Cho;Sun-Hye Choi;Sung-Hee Hwang;Hyewon Rhim;Ik-Hyun Cho;Man-Hee Rhee;Do-Geun Kim;Hyoung-Chun Kim;Seung-Yeol Nah
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.366-375
    • /
    • 2023
  • Background: Ginseng contains three active components: ginsenosides, gintonin, and polysaccharides. After the separation of 1 of the 3 ingredient fractions, other fractions are usually discarded as waste. In this study, we developed a simple and effective method, called the ginpolin protocol, to separate gintonin-enriched fraction (GEF), ginseng polysaccharide fraction (GPF), and crude ginseng saponin fraction (cGSF). Methods: Dried ginseng (1 kg) was extracted using 70% ethanol (EtOH). The extract was water fractionated to obtain a water-insoluble precipitate (GEF). The upper layer after GEF separation was precipitated with 80% EtOH for GPF preparation, and the remaining upper layer was vacuum dried to obtain cGSF. Results: The yields of GEF, GPF, and cGSF were 14.8, 54.2, and 185.3 g, respectively, from 333 g EtOH extract. We quantified the active ingredients of 3 fractions: L-arginine, galacturonic acid, ginsenosides, glucuronic acid, lysophosphatidic acid (LPA), phosphatidic acid (PA), and polyphenols. The order of the LPA, PA, and polyphenol content was GEF > cGSF > GPF. The order of L-arginine and galacturonic acid was GPF >> GEF = cGSF. Interestingly, GEF contained a high amount of ginsenoside Rb1, whereas cGSF contained more ginsenoside Rg1. GEF and cGSF, but not GPF, induced intracellular [Ca2+]i transient with antiplatelet activity. The order of antioxidant activity was GPF > GEF = cGSF. Immunological activities (related to nitric oxide production, phagocytosis, and IL-6 and TNF-α release) were, in order, GPF > GEF = cGSF. The neuroprotective ability (against reactive oxygen species) order was GEF > cGSP > GPF. Conclusion: We developed a novel ginpolin protocol to isolate 3 fractions in batches and determined that each fraction has distinct biological effects.