• Title/Summary/Keyword: $Ca^{2+}$ current($I_{Ca}$)

Search Result 150, Processing Time 0.022 seconds

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.

Nootkatol prevents ultraviolet radiation-induced photoaging via ORAI1 and TRPV1 inhibition in melanocytes and keratinocytes

  • Woo, Joo Han;Nam, Da Yeong;Kim, Hyun Jong;Hong, Phan Thi Lam;Kim, Woo Kyung;Nam, Joo Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.87-94
    • /
    • 2021
  • Skin photoaging occurs due to chronic exposure to solar ultraviolet radiation (UV), the main factor contributing to extrinsic skin aging. Clinical signs of photoaging include the formation of deep, coarse skin wrinkles and hyperpigmentation. Although melanogenesis and skin wrinkling occur in different skin cells and have different underlying mechanisms, their initiation involves intracellular calcium signaling via calcium ion channels. The ORAI1 channel initiates melanogenesis in melanocytes, and the TRPV1 channel initiates MMP-1 production in keratinocytes in response to UV stimulation. We aimed to develop a drug that may simultaneously inhibit ORAI1 and TRPV1 activity to help prevent photoaging. We synthesized nootkatol, a chemical derivative of valencene. TRPV1 and ORAI1 activities were measured using the whole-cell patch-clamp technique. Intracellular calcium concentration [Ca2+]i was measured using calcium-sensitive fluorescent dye (Fura-2 AM). UV-induced melanin formation and MMP-1 production were quantified in B16F10 melanoma cells and HaCaT cells, respectively. Our results indicate that nootkatol (90 μM) reduced TRPV1 current by 94% ± 2% at -60 mV and ORAI1 current by 97% ± 1% at -120 mV. Intracellular calcium signaling was significantly inhibited by nootkatol in response to ORAI1 activation in human primary melanocytes (51.6% ± 0.98% at 100 μM). Additionally, UV-induced melanin synthesis was reduced by 76.38% ± 5.90% in B16F10 melanoma cells, and UV-induced MMP-1 production was reduced by 59.33% ± 1.49% in HaCaT cells. In conclusion, nootkatol inhibits both TRPV1 and ORAI1 to prevent photoaging, and targeting ion channels may be a promising strategy for preventing photoaging.

Fabrication and Characterization of Bi-axial Textured Conductive Perovskite-type Oxide Deposited on Metal Substrates for Coated Conductor. (이축 배향화된 전도성 복합산화물의 금속 기판의 제조와 분석)

  • Sooyeon Han;Jongin Hong;Youngah Jeon;Huyong Tian;Kim, Yangsoo;Kwangsoo No
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.235-235
    • /
    • 2003
  • The development of a buffer layer is an important issue for the second -generation wire, YBCO coated metal wire. The buffer layer demands not only on the prohibition of the reaction between YBCO and metal substrate, but also the proper lattice match and conductivity for high critical current density (Jc) of YBCO superconductor, In order to satisfy these demands, we suggested CaRuO3 as a useful candidate having that the lattice mismatches with Ni (200) and with YBCO are 8.2% and 8.0%, respectively. The CaRuO3 thin films were deposited on Ni substrates using various methods, such as e-beam evaporation and DC and RF magnetron sputtering. These films were investigated using SEM, XRD, pole-figure and AES. In e-beam evaporation, the deposition temperature of CaRuO3 was the most important since both hi-axial texturing and NiO formation between Ni and CaRuO3 depended on it. Also, the oxygen flow rate had i[n effect on the growth of CaRuO3 on Ni substrates. The optimal conditions of crystal growth and film uniformity were 400$^{\circ}C$, 50 ㎃ and 7 ㎸ when oxygen flow rate was 70∼100sccm In RF magnetron sputtering, CaRuO3 was deposited on Ni substrates with various conditions and annealing temperatures. As a result, the conductivity of CaRuO3 thin films was dependent on CaRuO3 layer thickness and fabrication temperature. We suggested the multi-step deposition, such as two-step deposition with different temperature, to prohibit the NiO formation and to control the hi-axial texture.

  • PDF

Current Leads Fabrication of High $T_c$ Bi System Superconductor Using Rapid Cooling Method (급속응고법을 이용한 Bi 계 고온초전도체 전류도입선 제조)

  • 박용민;한진만;류운선;류운선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.254-258
    • /
    • 2000
  • Current leads of high $T_{c}$ superconductor were fabricated with Bi excess B $i_{2.2}$/S $r_{1.8}$/C $a_{1}$/C $u_{2}$/ $O_{x}$ composition by rapid cooling method. The dimensions of final samples were fixed 3 mm and 8 mm diameter with 50 mm length each To control uniform density the samples were preformed by CIP(Cold Isostatic Press) process and followed by partial or full melting process after raising up to 90$0^{\circ}C$ for 30min. Plate shaped microstructure was clearly observed adjacent to the Ag tube wall and the size of plate was about 100$\mu$m. However the severe destruction of growth orientation was shown in the inner growth part. critical temperature ( $T_{c}$) was about 53~71K after directional growth while Tc was decreased about 77~80 K before directional growth. After directional growth critical current( $I_{c}$) and critical current density( $J_{c}$) in the specimen of 8 mm diameter at 50 K were about 110 A and 280 A/c $m^2$ respectively.pectively.ely.

  • PDF

Block of HERG Channels Expressed in Xenopus Oocytes by External $H^+$

  • Jo, Su-Hyun;Kim, Injune;Yung E. Earm;Lee, Chin-Ok;Ho, Won-Kyung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.36-36
    • /
    • 1998
  • We reported previously that HERG current, molecular equivalent of I$_{kr}$, expressed in Xenopus oocytes is blocked by external $Ca^{2+}$ and $Mg^{2+}$. In the present study, we have investigated the effect of external H+ on HERG current (I$_{HERG}$) using the two microelectrode voltage clamp.(omitted)ted)

  • PDF

Asymmetrical Distribution of P2Y Nucleotide Receptors in Rabbit Inner Medullary Collecting Duct Cells

  • Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.311-318
    • /
    • 2000
  • We cultured the rabbit inner medullary collecting duct (IMCD) cells as monolayers on collagen-coated membrane filters, and investigated distribution of the P2Y receptors by analyzing nucleotide-induced short circuit current $(I_{sc})$ responses. Exposure to different nucleotides of either the apical or basolateral surface of cell monolayers stimulated $I_{sc}.$ Dose-response relationship and cross-desensitization studies suggested that at least 3 distinct P2Y receptors are expressed asymmetrically on the apical and basolateral membranes. A $P2Y_2-like$ receptor, which responds to UTP and ATP, is expressed on both the apical and basolateral membranes. In addition, a uracil nucleotide receptor, which responds to UDP and UTP, but not ATP, is expressed predominantly on the apical membrane. In contrast, a $P2Y_1-like$ receptor, which responds to ADP and 2-methylthio-ATP, is expressed predominantly on the basolateral membrane. These nucleotides stimulated intracellular cAMP production with an asymmetrical profile, which was comparable to that in the stimulation of $I_{sc}.$ Our results suggest that the adenine and uracil nucleotides can interact with different P2Y nucleotide receptors that are expressed asymmetrically on the apical and basolateral membranes of the rabbit IMCD cells, and that both cAMP- and $Ca^{2+}-dependent$ signaling mechanisms underlie the stimulation of $I_{sc}$.

  • PDF

Electrical Properties of Pt/SCT/Pt Thin Film Structure (Pt/SCT/Pt 박막 구조의 전기적인 특성)

  • Kim, Jin-Sa;Shin, Cheol-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1786-1790
    • /
    • 2007
  • The $(SrCa)TiO_3(SCT)$ thin films are deposited on Pt-coated electrode ($Pt/TiN/SiO_2/Si$) using RF sputtering method at various deposition temperature. The dielectric constant of SCT thin films were increased with the increase of deposition temperature, and changed almost linearly in temperature ranges of $-80{\sim}+90[^{\circ}C]$. Also, SCT thin films was observed the phenomena of dielectric relaxation with the increase of frequency, and the relaxation frequency was observed above 200[kHz]. V-I characteristics of SCT thin films show the increasing leakage current with the increases of deposition temperature. The conduction mechanism of the SCT thin films observed in the temperature range of $25{\sim}100[^{\circ}C]$ can be divided into three characteristic regions with different mechanism by the increasing current. The region 1 below 0.8[MV/cm] shows the ohmic conduction. The region 2 can be explained by the Child's law, and the region 3 is dominated by the tunneling effect.

Corrosion Behavior of High Pressure Die Cast Al-Ni and Al-Ni-Ca Alloys in 3.5% NaCl Solution

  • Arthanari, Srinivasan;Jang, Jae Cheol;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.100-108
    • /
    • 2017
  • In this investigation corrosion behavior of newly developed high-pressure die cast Al-Ni (N15) and Al-Ni-Ca (NX1503) alloys was studied in 3.5% NaCl solution. The electrochemical corrosion behavior was evaluated using open circuit potential (OCP) measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques. Potentiodynamic polarization results validated that NX1503 alloy exhibited lower corrosion current density ($i_{corr}$) value ($5.969{\mu}A/cm^2$) compared to N15 ($7.387{\mu}A/cm^2$). EIS-Bode plots revealed a higher impedance (${\mid}Z{\mid}$) value and maximum phase angle value for NX1503 than N15 alloy. Equivalent circuit curve fitting analysis revealed that surface layer ($R_1$) and charge transfer resistance ($R_{ct}$) values of NX1503 alloy was higher compared to N15 alloy. Immersion corrosion studies were also conducted for alloys using fishing line specimen arrangement to simultaneously measure corrosion rates from weight loss ($P_W$) and hydrogen volume ($P_H$) after 72 hours and NX1503 alloy had lower corrosion rate compared to N15 alloy. The addition of Ca to N15 alloy significantly reduced the Al3Ni intermetallic phase and further grain refinement may be attributed for reduction in the corrosion rate.

The Signal Transduciton of Ginsenosides, Active Ingredients of Panax ginseng, in Xenopus oocyte: A Model System for Ginseng Study

  • Nah Seung-Yeol;Lee Sang-Mok
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.66-83
    • /
    • 2002
  • Recently, we have provided evidence that ginsenosides, the active components of Panax ginseng, utilize pertussis toxin (PTX)-insensitive $G{\alpha}_{q/11}-phospholipase\;C-{\beta}3(PLC-{\beta}3)$ signal transduction pathway for the enhancement of $Ca^{2+}-activated\;Cl^{-}$ current in the Xenopus oocyte (British J. Pharmacol. 132, 641-647, 2001; JBC 276, 48797-48802, 2001). Other investigators have shown that stimulation of receptors linked to $G{\alpha}-PLC$ pathway inhibits the activity of G proteincoupled inwardly rectifying $K^+$ (GIRK) channel. In the present study, we sought to determine whether ginsenosides influenced the activity of GIRK 1 and GIRK 4 (GIRK 1/4) channels expressed in the Xenopus oocyte, and if so, the underlying signal transduction mechanism. In oocyte injected with GIRK 1/4 channel cRNAs, bath-applied ginsenosides inhibited high potassium (HK) solution-elicited GIRK current $(EC_{50}:4.9{\pm}4.3\;{\mu}g/ml).$ Pretreatment of the oocyte with PTX reduced the HK solution-elicited GIRK current by $49\%,$ but it did not alter the inhibitory ginsenoside effect on GIRK current. Prior intraoocyte injection of cRNA(s) coding $G{\alpha}_q,\;G{\alpha}_{11}\;or\;G{\alpha}_q/G{\alpha}_{11},\;but\;not\;G{\alpha}_{i2}\;or\;G{\alpha}_{oA}$ attenuated the inhibitory ginsenoside effect. Injection of cRNAs coding $G{\beta}_{1{\gamma}2}$ also attenuated the ginsenoside effect. Similarly, injection of the cRNAs coding regulators of G protein signaling 1, 2 and 4 (RGS1, RGS2 and RGS4), which interact with $G{\alpha}_i\;and/or\;G{\alpha}_{q/11}$ and stimulates the hydrolysis of GTP to GDP in active GTP-bound $G{\alpha}$ subunit, resulted in a significant reduction of ginsenoside effect on GIRK current. Preincubation of GIRK channel-expressing oocyte in PLC inhibitor (U73122) or protein kinase C (PKC) inhibitor (staurosporine or chelerythrine) blocked the inhibitory ginsenoside effect on GIRK current. On the other hand, intraoocyte injection of BAPTA, a free $Ca^{2+}$ chelator, had no significant effect on the ginsenoside action. Taken together, these results suggest that ginsenosides inhibit the activity of GIRK 1/4 channel expressed in the Xenopus oocyte through a PTX-insensitive and $G{\alpha}_{q/11}$-,PLC-and PKC-mediated signal transduction pathway.

  • PDF

The Inhibitory Effects of Hydrogen Sulfide on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Parajuli, Shankar Prasad;Choi, Seok;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Kim, Hyun-Il;Yeum, Cheol-Ho;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • In this study, we studied whether hydrogen sulfide ($H_2S$) has an effect on the pacemaker activity of interstitial cells of Cajal (ICC), in the small intestine of mice. The actions of $H_2S$ on pacemaker activity were investigated using whole-cell patch-clamp technique, intracellular $Ca^{2+}$ analysis at $30^{\circ}C$ and RT-PCR in cultured mouse intestinal ICC. Exogenously applied sodium hydrogen sulfide (NaHS), a donor of hydrogen sulfide, caused a slight tonic inward current on pacemaker activity in ICC at low concentrations (50 and $100{\mu}m$), but at high concentration ($500{\mu}m$ and 1 mM) it seemed to cause light tonic inward currents and then inhibited pacemaker amplitude and pacemaker frequency, and also an increase in the resting currents in the outward direction. Glibenclamide or other potassium channel blockers (TEA, $BaCl_2$, apamin or 4-aminopydirine) did not have an effect on NaHS-induced action in ICC. The exogenous application of carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and thapsigargin also inhibited the pacemaker activity of ICC as NaHS. Also, we found NaHS inhibited the spontaneous intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) oscillations in cultured ICC. In doing an RT-PCR experiment, we found that ICC enriched population lacked mRNA for both CSE and CBS, but was prominently detected in unsorted muscle. In conclusion, $H_2S$ inhibited the pacemaker activity of ICC by modulating intracellular $Ca^{2+}$. These results can serve as evidence of the physiological action of $H_2S$ as acting on the ICC in gastrointestinal (GI) motility.