• Title/Summary/Keyword: $Ca(OH)_2$ & $CO_2$ addition

Search Result 95, Processing Time 0.026 seconds

Studies on Cellulolytic Enzymes Produced by Aspergillus saitoi -II. Influence of Various Media Condition on Cellulase Production- (Aspergillus saitoi가 생산(生産)하는 섬유소(纖維素) 분해(分解) 효소(酵素)에 관(關)한 연구(硏究) -제 2 보(第 2 報) 각종(各種) 배지조건(培地條件)이 Cellulase 생성(生成)에 미치는 영향에 관하여-)

  • Lee, Soon-Ae;Oh, Suk-Hen;Youn, Jung-Eui
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.185-188
    • /
    • 1971
  • This experiment was conducted to study on the productive conditions of cellulase by Aspergillus saitoi in the shaking culture medium. The results were as follows: 1. The production of enzyme required higher concentration of corn steep liquor than that of dextrin. 2. The concentration of 1.0% $NH_4H_2SO_4$ produced the enzyme excellently than 3.0%. 3. The cellulase was produced very slowly by adding $(NH_4)_2SO_4$, but the final concentration of the enzyme was higher than control. The production was suppressed by addition of $CaCO_3$. 4. The addition of $1.0{\sim}2.0%$ substrate caused an increase or stimulation in cellulase production.

  • PDF

Influence of Calcium on the Formation of Aluminosilicate Inorganic Polymer Binder

  • Ahn, Sangwook;Choi, Youngkue;Shin, Byeongkil;Lee, Jungwoo;Lee, Heesoo;Hui, Kwunnam
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.362-366
    • /
    • 2011
  • Aluminosilicate inorganic polymer binder has been studied as an alternative to ordinary Portland cement due to its higher physical properties, chemical resistance and thermal resistance. This study has been carried out in an attempt to understand the hardening characteristics of aluminosilicate binder by varying the content of calcium. Samples with four different ratios of Al, Si, and Ca were synthesized in this study with the Al:Si:Ca mol ratio being 1.00:1.85~1.98:0.29~2.12. Furthermore, an alkali silicate solution was prepared with the sodium hydroxide (NaOH) and sodium silicate (NaSi). The hardening characteristics of the specimens were analyzed using XRD, SEM, and TG/DTA. In addition, compressive strength and sintering time of specimens were measured as a function of calcium content. The results showed that the specimen containing 2.12 mol% calcium offered the highest compressive strength. However, the compressive strength of the specimen containing 0.26 mol% calcium was lower relative to the other specimens. The results displayed a distinct tendency that as more calcium was added to the inorganic polymer, setting time became shorter. When calcium was added to the inorganic polymer structure, a second phase was not formed, indicating that the addition of calcium does not affect the crystalline structure.

Properties of non-cement mortars with small addition of alkali activator using fly ash and fused waste slag (석탄회 및 용융폐기물 슬래그에 소량의 알칼리 활성화제를 첨가한 무시멘트 모르타르의 특성)

  • Kim, Yootaek;Lee, Kyongwoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.257-262
    • /
    • 2015
  • Recently the world wide efforts reduce occurrence of $CO_2$; global warming main reason. The aim of this study is to improve recycling rate of the fly ash (FA) and fused waste slag (FWS) from the power plant and to carbonate under supercritical condition ($40^{\circ}C$, $80kgf/cm^2$ pressure, 60 min) for $CO_2$ fixation. Specimens of mortar with various mixing ratios of FA, FWS (from 100:0 to 20:80 in 5 steps of 20 % reduction each time), distilled water and 3 M NaOH alkali activators were prepared. As a result, the proportion of weight change ratio increases with CaO content, to 12 % after carbonation under the supercritical condition. There is difference of compressive strength between the carbonated and the alkali activator mortar specimens. The stabilization of $CO_2$ fixation through carbonation which could confirm the applicability of the eco-friendly materials without loss of compressive strength.

Study on Physical and Chemical Properties of CaO-Al2O3 System Melting Compound (CaO-Al2O3계 용융화합물의 물리·화학적 특성에 관한 연구)

  • Lee, Keun-Jae;Koo, Ja-Sul;Kim, Jin-Man;Oh, Sang-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.209-215
    • /
    • 2013
  • This study is aimed to identify the method to use the CaO-$Al_2O_3$ system of rapidly cooled steel making slag (RCSS) as the environment-friendly inorganic accelerating agent by analyzing its physical and chemical properties. The fraction of rapidly cooled steel making slag is distinguished from its fibrous, and the contents of CaO and $Fe_2O_3$ are inversely proportional across different fractions. In addition, as the content of CaO decreased and the content of $Fe_2O_3$ increased, the loss ignition tended to become negative (-) and the density increased. The pore distribution by mercury intrusion porosimetry is very low as compared to the slowly cooled steel-making slag, which indicates that the internal defect and the microspore rate are remarkably lowered by the rapid cooling. To analyze the major minerals the rapidly cooled steel-making slag, XRD, f-CaO quantification and SEM-EDAX analysis have been performed. The results shows that f-CaO does not exist, and the components are mainly consisted of $C_{12}A_7$ and reactive ${\beta}-C_2S$.

Ethanol Extracts from the Roots of Reed Prevent Skin Hyperpigmentation, Wrinkle Formation and Dryness

  • Sung Hyeok Kim;Sohee Jang;Hyun Jung Koo;Seung Namkoong;Sungsil Hong;Mi-Ja Kim;Chang Woo Ha;Hyosun Lim;Youn Kyu Kim;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.49-49
    • /
    • 2021
  • The roots of reed (Phragmites australis) were used in traditional medicine to treat respiratory problems, including symptoms such as high fever and cough. In this study, we identified the active ingredient from 70% EtOH reed root extract, and evaluated the whitening, wrinkle improvement and moisturizing effects. The content of p-coumaric acid, the active ingredient of the roots of P. australis, was slightly lower in 70% EtOH extract than in 100% EtOH extract. However, 70% EtOH reed root extract showed similar or higher effect in reducing power, DPPH, hydrogen peroxide scavenging, and nitric oxide scavenging activity compared to 100% EtOH extract. Moreover, 70% EtOH reed root extract markedly inhibited melanogenesis in B16F10 cells treated with α-melanocyte-stimulating hormone. 70% EtOH reed root extract significantly inhibited the mRNA expression of matrix metalloproteinase-1 (MMP-1) and reduced elastase activity in HDF human dermal fibroblasts. In addition, 70% EtOH reed root extract ameliorated hyaluronic acid synthase-2 (HAS-2) expression induced by ultraviolet B (UVB) stimulation in HaCaT keratinocytes. The results of this study suggest that 70% EtOH reed root extract has potential as a functional cosmetic material related to whitening, wrinkle improvement, and moisturizing.

  • PDF

Remediation Process by using Lime and Calcium Carbonate for Heavy Metal Contaminated Groundwater Originated from Landfills (소석회$(Ca(OH)_2)$와 탄산칼슘$(CaCO_3)$을 이용한 매립장 주변 중금속 오염 지하수 정화)

  • Song Nain;Lee Yesun;Lee Minhee
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.273-284
    • /
    • 2005
  • Coagulation and precipitation process by using lime$(Ca(OH)_2)$ and calcium carbonate $(CaCO_3)$ were applied to remove heavy metals from groundwater in laboratory scale. From results of batch tests, by the addition of $0.3\;wt.\%$ lime, more than $90\%$ of As and Mn were removed and $70-80\%$ of Cd and Zn were removed by using $0.5\;wt.\%$ of lime. Removal efficiency of Pb almost reached $100\%$ with only $0.1\;wt.\%$ of calcium carbonate and more than $93\%$ of Cd were removed by the addition of $0.1\;wt.\%$of calcium carbonate. Pilot scale column experiments were performed to remove heavy metals in the separation process of precipitated Hoc to supernatant after the coagulation/ precipitation. For lime as a coagulant, more than $99\%$of As were removed from artificial groundwater and removal efficiencies of Cd, Mn, and Zn were over $80\%$. By using calcium carbonate, more than $95\%$ of Cd and Pb were removed in column experiment. Fe and Mn contaminated groundwater taken from a real landfill site, Ulsan was used for the column experiment and more than $99\%$ of Fe and Mn were removed by the addition of $1\;wt.\%$ lime in column experiment, suggesting that the coagulation/precipitation process by using lime and calcium carbonate have a great possibility to remove heavy metals from contaminated groundwater.

Protective Effects of Perilla frutescens Britt var. japonica Extracts from Oxidative Stress in Human HaCaT Keratinocytes (HaCaT 피부각질세포에서 들깻잎 추출물의 산화적 스트레스에 대한 항산화 효과)

  • Ji, Na;Song, Jia-Le;Kil, Jeung-Ha;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.2
    • /
    • pp.161-167
    • /
    • 2013
  • The aim of this study was to investigate the protective effects of methanolic extract from perilla (Perilla frutescens Britt var. japonica) leaves (PLME) on oxidative injury from hydrogen peroxide ($H_2O_2$) in human HaCaT keratinoctyes. Cells were co-incubated with various concentrations (0~200 ${\mu}g/mL$) of PLME for 24 hr, and then exposed to $H_2O_2$ (500 ${\mu}M$) for 4 hr. $H_2O_2$ significantly decreased cell viability (p<0.05). However, PLME provided protection from $H_2O_2$-induced HaCaT cell oxidation in a dose-dependent manner. To further investigate the protective effects of PLME on $H_2O_2$-induced oxidative stress in HaCaT cells, the cellular levels of lipid peroxidation, and antioxidant enzymes (including superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and catalase (CAT)) were measured. PLME decreased cellular levels of lipid peroxidation, and also increased the activities of antioxidant enzymes. In addition, the antioxidant activities of PLME were also determined by DPPH and hydroxyl (${\cdot}OH$) radical scavenging assay, and major antioxidant compounds of PLME were measured by colorimetric methods. DPPH and ${\cdot}OH$ radical scavenging activities of PLME increased in a dose dependent manner and was similar to the DPPH scavenging activity of ascorbic acid at 50 ${\mu}g/mL$; however PLME activities were stronger than ascorbic acid (50 ${\mu}g/mL$) in the ${\cdot}OH$ scavenging assay. The amounts of antioxidant compounds, including total polyphenolics, total flavonoids, and total ascorbic acid from PLME were $52.2{\pm}1.1$ mg gallic acid (GAE)/g, $33.7{\pm}4.7$ mg rutin (RUE)/g, and $17.0{\pm}0.5$ mg ascorbic acid (AA)/g, respectively. These results suggest that PLME has a strong free radical-scavenging activity and a protective effect against $H_2O_2$-induced oxidative stress in the keratinocytes.

Hypertonicity Down-regulates the $1{\alpha},25(OH)_2$ Vitamin $D_3$-induced Osteoclastogenesis Via the Modulation of RANKL Expression in Osteoblast

  • Jeong, Hyun-Joo;Yushun, Tian;Kim, Bo-Hye;Nam, Mi-Young;Lee, Hyun-A;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Ohk, Seung-Ho;Lee, Syng-Ill
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.23-30
    • /
    • 2005
  • Bone remodeling is a process controlled by the action of two major bone cells; the bone forming osteoblast and the bone resorbing osteoclast. In the process of osteoclastogenesis, stromal cells and osteoblast produce RANKL, OPG, and M-CSF, which in turn regulate the osteoclastogenesis. During the bone resorption by activated osteoclasts, extracellular $Ca^{2+}/{PO_4}^{2-}$ concentration and degraded organic materials goes up, providing the hypertonic microenvironment. In this study, we tested the effects of hypertonicity due to the degraded organic materials on osteoclastogenesis in co-culture system. It was examined the cellular response of osteoblastic cell in terms of osteoclastogenesis by applying the sucrose, and mannitol, as a substitute of degraded organic materials to co-culture system. Apart from the sucrose, mannitol, and NaCl was tested to be compared to the effect of organic osmotic particles. The addition of sucrose and mannitol (25, 50, 100, 150, or 200 mM) to co-culture medium inhibited the number of tartrate-resistant acid phosphatase (TRAP) positive multinucleated cells induced by 10 nM $1{\alpha},25(OH)_2vitaminD_3$ ($1{\alpha},25(OH)_2D_3$). However, NaCl did exert harmful effect upon the cells in this co-culture system, which is attributed to DNA damage in high concentration of NaCl. To further investigate the mechanism by which hypertonicity inhibits $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, the mRNA expressions of receptor activator of nuclear factor (NF)-kB ligand (RANKL) and osteoprotegerin (OPG) were monitored by RT-PCR. In the presence of sucrose (50 mM), RANKL mRNA expression was decreased in a dose-dependent manner, while the change in OPG and M-CSF mRNA were not occurred in significantly. The RANKL mRNA expression was inhibited for 48 hours in the presence of sucrose (50 mM), but such a decrement recovered after 72 hours. However, there were no considerable changes in the expression of OPG and M-CSF mRNA. Conclusively, these findings strongly suggest that hypertonic stress down-regulates $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis via RANKL signal pathway in osteoblastic cell, and may playa pivotal role as a regulator that modulates osteoclastogenesis.

The Hydraulic Characteristics of Liquid Shotcrete Accelerators within Cement System (시멘트 계에서 액상 숏크리트용 급결제의 수화 특성에 관한 연구)

  • Shin Jin-Yong;Kim Jae-Young;Hong Ji-Sook;Suh Jeong-Kwon;Rho Jae-Seong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.1011-1018
    • /
    • 2005
  • The influence of liquid shotcrete accelerators(alkali aluminate, two types of alkali-free) was investigated. Comparing to the existing alkali aluminate accelerator, new alkali-free accelerator, AF2, shortened initial and final setting of cement system, and after curing for 1 day compressive strength was analogous with others. On the other hand, compressive strength of specimen cured for 12 hour was the highest by the addition of alkali aluminate accelerator, but final strength was the lowest by that. But compressive strengths of AF1, AF2 were similar to Plain up to 28day. Further from XRD(X-Ray Diffractometer) and DSC(Differential Scanning Calorimeter) analyses, we confirmed that setting promoted by alkali aluminate was mainly because of Ca(OH)2(calcium hydroxide), but the accelerating behavior of alkali-free was influenced by the needle-like ettringite$(6CaO{\cdot}Al_2O_3{\cdot}3SO_3{\cdot}32H_2O)$ crystal.

A Study on the Skin Improvement of Ethanol and Hot Water Extracts from Scutellaria baicalensis (황금 에탄올 및 열수 추출물의 피부 개선 연구)

  • Seong Mi Cho;Yu Rim Won;Jin Oh Park;Hye Ja Lee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • In this study, we investigated the antioxidant activity, anti-inflammatory activity, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects of 70% EtOH and hot water extract from Scutellaria baicalensis. For the anti-oxidative test, the 70% EtOH and hot water extract showed DPPH radical scavenging activities. In the anti-inflammatory tests, 70% EtOH and hot water extract inhibited the production of NO, pro-inflammatory cytokine (IL-6) and prostaglandin (PGE2). In addition, it was confirmed that the 70% EtOH and hot water extract inhibited the melanin production, and increased production of hyaluronic acid (HA), a moisturizing factor. As a result of cell migration and proliferation assay, 70% EtOH extract promoted the cell growth in HaCaT cell. Additionally, 70% EtOH and hot water extract showed cell protective effects against UVB, and 70% EtOH extract also showed cell protective effects agianst blue light. Based on these results, it is concluded that the 70% EtOH and hot water extract from Scutellaria baicalensis could be potentially applicable as anti-oxdiative, anti-inflammation, whitening, moisturizing, wound-healing, cell proliferation and cell protective effects in cosmetic natural materials.