• Title/Summary/Keyword: $C_s$ symmetry

Search Result 122, Processing Time 0.089 seconds

Synthesis and X-ray Crystallographic Characterization of Spiro Orthocarbonates

  • Park Young Ja;No Kwang Hyun;Kim Ju Hee;Suh Il-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.375-381
    • /
    • 1992
  • In this study we have synthesized two spiro orthocarbonates, which can be polymerized with volume expansion, and determined their crystal structures. The crystal data are as follows; 3,4,10,11-Di(9,10-dihydro-9,10-ethanoanthracenyl)- 1,6,8,13-tetraoxa-6.6-tridecane 5: a = 16.898 (1), b = 9.299 (1), c = 24.359 (2) ${\AA}$, $\beta$ = 123.73 $(7)^{\circ}$, space group P21/c and R = 0.073 for 2954 reflections; compound 8: a = 15.244 (4), b = 15.293 (3), c = 10.772 (3) $\AA$, ${\beta}$ = 99.45 $(2)^{\circ}$, space group P21/c and R = 0.082 for 2346 reflections. The seven-membered rings of compound 5 are chair forms and all the six-membered rings are boat shaped. For a six-membered spiro orthocarbonate, 3,9-Di(9-fluorenylidenyl)-1,4,6,9-tetraoxa-5,5-und ecane 8, fluorene groups [C(1) atom through C(13) atom] are planar within ${\pm}0.09{\AA}$ and the six-membered rings have chair conformations. The whole molecule has pseudo-C2 symmetry. The water molecules in the crystal are linked with each other through the hydrogen bond with distance of 2.790 (20) ${\AA}$.

Electron Microscopy and Magnetic Properties of Tetra(n-butyl) ammonium salts of $[Ni(dmbit)_2]^1- (dmbit^2-:C_7H_2S_5$:2-thiobenzo[d]-1,3-dithiole-5,6-dithiolate;$dmbbip^{2-}:C_{12}H_{16}S_4$:1,2-bis(isopropylthio)benzene-4,5-dithiolat

  • No, Dong Yeon;Gang, Mi Jeong;Lee, Ha Jin;Kim, Jong Hyeon;Choe, Jin Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.1
    • /
    • pp.46-50
    • /
    • 1996
  • Monoanionic nickel(Ⅲ) complexes, [Ni(dmbit)2]1- and [Ni(dmbbip)2]1- where dmbit2- and dmbbip2- denote 2-thiobenzo[d]-1,3-dithiole-5,6-dithiolate and 1,2-bis(isopropylthio)benzen-4,5-dithiolate, respectively, have been synthesized by the iodine oxidation of dianionic complexes. In the scanning electron microscopic(SEM) images, these complexes show the well-grown two-dimensional layered structures which are clearly comparable to the dianionic ones with three-dimensional structures. Magnetic susceptibilities of nickel(Ⅲ)complexes are fitted well with the two-dimensional Heisenberg antiferromagnet model of S=1/2 system resulting in the spin-exchange parameters (|J|/k) of 11.4 K and 0.45 K, respectively. The weaker magnetic interaction in [Ni(dmbbip)2]1- is resulted from the bulky isopropyl groups on the periphery of dmbbip ligand. EPR measurements for [Ni(dmbit)2]1- give the signal with axial symmetry and the anisotropic g-values for low-spin nickel(Ⅲ) (g//=2.158, g =2.030,gav=2.074 at 300 K; g//=2.162, g =2.038, gav=2.080 at 77 K). It is therefore concluded that nickel(Ⅱ) is oxidized to nickel(Ⅲ), rather than dmbit2- and dmbbip2- ligands are, by the iodine oxidation. The paramagnetic Ni(Ⅲ) would be located in the axial symmetry(D4h) with the electronic configuration of (dxz2dyz2dz22dxy1dx2-y20).

Structural, FTIR and ac conductivity studies of NaMeO3 (Me ≡ Nb, Ta) ceramics

  • Roy, Sumit K.;Singh, S.N.;Kumar, K.;Prasad, K.
    • Advances in materials Research
    • /
    • v.2 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • Lead-free complex perovskite ceramics $NaMeO_3$ ($Me{\equiv}Nb$, Ta) were synthesized using conventional solid state reaction technique and characterized by structural, FTIR and electrical (dielectric and ac conductivity) studies. The crystal symmetry, space group and unit cell dimensions were determined from the experimental results using FullProf software. XRD analysis of the compound indicated the formation of single-phase orthorhombic structure with the space group Pmmm (47). Dielectric studies showed the diffuse phase transition at $394^{\circ}C$ for $NaNbO_3$ and $430^{\circ}C$ for $NaTaO_3$. Ac conductivity in both the compounds follows Jonscher's power law.

Theoretical Studies of $d^0$ Titanocene Complexes

  • Kang, Sung-Kwon;Ahn, Byeong-Gak;Choi, Eun-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.996-1000
    • /
    • 1994
  • Ab initio calculations with various basis sets have been carried out to investigate the geometries and ring inversion barrier of $R_2TiC_3H_6\;and\;R_2TiS_3$, R=Cp and Cl. Optimized geometries of $R_2TiC_3H_6$ showed the four membered ring was planar on Cs symmetry. However, $R_2TiS_3$ complexes were optimized to be stable in the puckered form. The smallest Basis III with STO-3G on Cp ligands gave reasonable results for the calculations of metallocene. The energy barrier for the ring inversion of metallacyclosulfanes, $Cp_2TiS_3$ was computed to be 8.72 kcal/mol at MP2 level. For the Cl system, we reproduced the molecular structure and ring inversion energy with Basis V.

Optical Properties of Cdlnsub 2Ssub 4 and Cdlnsub 2Ssub 4 : $CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$Single Crystals ($CdIn_2S_4$$CdIn_2S_4 : Co^{2+}$ 단결정의 광학적 특성)

  • Choe, Seong-Hyu;Bang, Tae-Hwan;Kim, Hyeong-Gon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.296-302
    • /
    • 1999
  • $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ singlecrystals of thenormal spinel structure were grown by the C.T.R. method. The optical energy band structure of these compounds had a indirect band gap at the fundamental optical absorption band edge. The direct and the indirect energy gaps are found to be 2.325 and2.179eV for $Cdln_2S_4$ , and 2.303 and 2.169eV for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$ at 5K, respectivly. The fundamental absorption band edge of these single crystals shift to a shorter wavelength region with decreasing temperature, and the temperature dependence of the optical energy gaps in these compounds satisfy Varshni equation. The Varshni constants$\alpha and \beta$ of the direct energy gap are given by $13.39{\times}10_{-4}eV/K$ and 509 K for $Cdln_2S_4$ and $29.73{\times}10_{-4} eV/K$ and 1398K for $CdIn_2S_4 and CdIn_2S_4 : Co^{2+}$. The Varshni constants ${\alpha}and {\beta}$ of the indirect energy gap are given by 9.68${\times}10^{-4}$ eV/K 308K for $Cdln_2S_4$ and $13.33{\times}10_{-4}eV/K$ and 440K for $CdIn_2S_4 : Co^{2+}$ respectivly. The impurity optical absorption peaks due to cobalt dopant are observed in $CdIn_2S_4 : Co^{2+}$ single crystal. These impurity optical absorption peaks can be attributed to the electronic transitions between the split energy levels of $Co_{2+}$ ions located at $T_d$ symmetry site of $Cdln_2S_4$ host lattece.

  • PDF

Surface Plasmon Nanooptics in Plasmonic Band Gap Structures: Interference of Polarization Controlled Surface Waves in the Near Field

  • Kim, D. S.;Yoon, Y. C.;Hohng, S. C.;Malyarchuk, V.;Lienau, Ch.;Park, J. W.;Kim, J. H.;Park, Q. H.
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.83-86
    • /
    • 2002
  • Nanoscopic emission from periodic nano-hole arrays in thick metal films is studied experimentally. The experiments give direct evidence for SP excitations in such structures. We show that the symmetry of the emission is governed by polarization and its shape is defined the interference of SP waves of different diffraction orders. Near-Held pattern analysis combined with the far-Held reflection and transmission measurements suggests that the SP eigenmodes of these arrays may be understood as those of ionic plasmon molecules.

Orbital Interactions in$ BeC_{2}H_{2}\;and\;LiC_{2}H_{2}$ Complexes

  • Ikchoon Lee;Jae Young Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1993
  • Ab initio calculations are carried out at the 6-311G$^{**}$ level for the $C_{2v}$ interactions of Be and Li atoms with acetylene molecule. The main contribution to the deep minima on the $^3B_2\;BeC_2H_2\;and\;^2B_2 LiC_2H_2$ potential energy curves is the b_2\;(2p(3b_2)-l{\pi}_g^*(4b_2))$ interaction, the $a_1\;(2s(6a_1)-I{\pi}_u(5a_1))$ interaction playing a relatively minor role. The exo deflection of the C-H bonds is basically favored, as in the $b_2$ interaction, due to steric crowding between the metal and H atoms, but the strong in-phase orbital interaction, or mixing, of the $a_1$ symmetry hydrogen orbital with the $5a'_1,\;6a'_1,\;and\;7a'_1$ orbitals can cause a small endo deflection in the repulsive complexes. The Be complex is more stable than the Li complex due to the double occupancy of the 2s orbital in Be. The stability and structure of the $MC_2H_2$ complexes are in general determined by the occupancy of the singly occupied frontier orbitals.

Computational Study on Spirocyclic Compounds as Energetic Materials (I)

  • Seok, Won K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.989-993
    • /
    • 2014
  • The molecular structures of 2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (1) and its dinitro derivative, 2,6-dinitro-2,6-diaza-1,3,5,7-tetraoxaspiro[3,3]heptane (2), were fully optimized without symmetry constraints at $HF/6-31G^*$ level of theory. A bisected conformation with respect to the ring is preferred with a $C_2$ symmetric structure. The density of each molecule in the crystalline state was estimated to 1.12 and 2.36 $g/cm^3$ using PM3/VSTO-3G calculations from the molecular volume. The heat of formation was calculated for two compounds at the CBS-4M level of theory. The detonation parameters were computed using the EXPLO5 software: D = 6282 m/s, $P_{C-J}$ = 127 kbar for compound 1, D = 7871 m/s, $P_{C-J}$ = 307 kbar for compound 2, and D = 6975 m/s, $P_{C-J}$ = 170 kbar for 60% compound 2 with 40% TNT. Specific impulse of compound 1 in aluminized formulation when used as monopropellants was very similar to that of the conventional ammonium perchlorate in the same formulation of aluminum.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

Growth and optical properties of undoped and Co-doped CdS single crystals (CdS 및 $CdS:Co^{2+}$ 단결정의 성장과 광학적 특성)

  • Kim, N.O.;Bang, T.H.;Hyun, S.C.;Park, K.H.;Park, H.;Oh, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.94-97
    • /
    • 2002
  • CdS and $CdS:Co^{2+}$ single crystals were grown by CTR method using iodine as transport material. The grown single crystals have defect chalcopyrite structure with direct band gap. The optical energy band gap was decreased according to add of Co-impurity. We can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_d$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

  • PDF