• Title/Summary/Keyword: $C_8-BTBT$

Search Result 2, Processing Time 0.014 seconds

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

Cost-Effective Soft Lithography of Organic Semiconductors in OFETs with Compact Discs as Master Molds (Compact Disc를 마스터 몰드로 사용하는 저비용의 OFET용 유기반도체 소프트 리소그래피)

  • Sejin Park;Hyukjin Kim;Tae Kyu An
    • Journal of Adhesion and Interface
    • /
    • v.23 no.4
    • /
    • pp.116-121
    • /
    • 2022
  • OFET have require fine patterning technology for organic semiconductor solution process to be used in actual electronics. In this study, we compared and analyzed the soft lithography method which can form fine patterns more than the conventional spin coating method in order to confirm that it can have better electrical characteristics. The soft lithography method produced a flexible master mold using nano patterns on compact disc surfaces and obtained a 650 nm wide 2,7-Dioctyl [1] benzothieno [3,2-b] [1] benzo thiophene (C8-BTBT) nanowires. As a result, the field-effect mobility of devices fabricated by the spin coating method was 0.0036 cm2/Vs and mobility of devices produced by soft lithography method was 0.086 cm2/Vs, which was about 20 times higher than spin-coated devices and has better electrical performance.