• Title/Summary/Keyword: $C_4$-precursors

Search Result 313, Processing Time 0.027 seconds

Initial Reaction of Zn Precursors with Si (001) Surface for ZnO Thin-Film Growth (ZnO 박막 성장을 위한 Zn 전구체와 Si (001) 표면과의 초기 반응)

  • Kim, Dae-Hee;Lee, Ga-Won;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.463-466
    • /
    • 2010
  • We studied the initial reaction mechanism of Zn precursors, namely, di-methylzinc ($Zn(CH_3)_2$, DMZ) and diethylzinc ($Zn(C_2H_5)_2$, DEZ), for zinc oxide thin-film growth on a Si (001) surface using density functional theory. We calculated the migration and reaction energy barriers for DMZ and DEZ on a fully hydroxylized Si (001) surface. The Zn atom of DMZ or DEZ was adsorbed on an O atom of a hydroxyl (-OH) due to the lone pair electrons of the O atom on the Si (001) surface. The adsorbed DMZ or DEZ migrated to all available surface sites, and rotated on the O atom with low energy barriers in the range of 0.00-0.13 eV. We considered the DMZ or DEZ reaction at all available surface sites. The rotated and migrated DMZs reacted with the nearest -OH to produce a uni-methylzinc ($-ZnCH_3$, UMZ) group and methane ($CH_4$) with energy barriers in the range of 0.53-0.78 eV. In the case of the DEZs, smaller energy barriers in the range of 0.21-0.35 eV were needed for its reaction to produce a uni-ethylzinc ($-ZnC_2H_5$, UEZ) group and ethane ($C_2H_6$). Therefore, DEZ is preferred to DMZ due to its lower energy barrier for the surface reaction.

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.

Effect of Nitrogen Precursors in Non-precious Metal Catalysts on Activity for the Oxygen Reduction Reaction (비귀금속 촉매에서 사용되는 질소 전구체가 산소 환원 반응의 활성에 미치는 영향)

  • Yoon, Ho Seok;Jung, Won Suk
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.151-158
    • /
    • 2022
  • Iron and nitrogen coordinated carbon catalyst (Fe-N-C) is the most promising non-precious metal catalyst (NPMC) studied to alternate the Pt-group oxygen reduction reaction (ORR) catalyst. In this work, Fe/N/C type catalysts are prepared by four different nitrogen precursors; N, N, N', N'-tetramethylethylenediamine (TMEDA), 1,2-ethylenediamine (EDA), m-dicyanobenzene (DCB), dicyandiamide (DCDA) which can chelate a transition metal; In addition, the catalysts conducted the pyrolysis process at four different temperatures of 700, 800, 900, 1000 ℃ to investigate the ORR activities depend on pyrolysis temperature and to find an appropriate temperature. The characterizations of catalysts were investigated by scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), and element analysis (EA). The electrocatalytic activity was measured by ORR polarization, also the electron transfer number was calculated from the slope of the K-L plot. The FeNC-EDA-800 which were prepared at pyrolysis temperature of 800 ℃ with EDA showed better ORR activity than the other catalysts.

A Study of Properties of 3C-SiC Films deposited by LPCVD with Different Films Thickness

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.3
    • /
    • pp.101-104
    • /
    • 2008
  • The electrical properties and microstructure of nitrogen-doped poly 3C-SiC films were studied according to different thickness. Poly 3C-SiC films were deposited by LPCVD(low pressure chemical vapor deposition) at $900^{\circ}C$ and 4 Torr using $SiH_2Cl_2$ (100 %, 35 sccm) and $C_2H_2$ (5 % in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5 % in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the 3C-SiC films with $1,530{\AA}$ of thickness was $32.7{\Omega}-cm$ and decreased to $0.0129{\Omega}-cm$ at $16,963{\AA}$. In XRD spectra, 3C-SiC is so highly oriented along the (1 1 1) plane at $2{\theta}=35.7^{\circ}$ that other peaks corresponding to SiC orientations are not presented. The measurement of resistance variations according to different thickness were carried out in the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of resistance variation decreases with increasing the films thickness, the linearity of resistance variation improved.

The Fabrication by using Surface MEMS of 3C-SiC Micro-heaters and RTD Sensors and their Resultant Properties

  • Noh, Sang-Soo;Seo, Jeong-Hwan;Lee, Eung-Ahn
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.131-134
    • /
    • 2009
  • The electrical properties and the microstructure of nitrogen-doped poly 3C-SiC films used for micro thermal sensors were studied according to different thicknesses. Poly 3C-SiC films were deposited by LPCVD (low pressure chemical vapor deposition) at $900^{\circ}C$ with a pressure of 4 torr using $SiH_2Cl_2$ (100%, 35 sccm) and $C_2H_2$ (5% in $H_2$, 180 sccm) as the Si and C precursors, and $NH_3$ (5% in $H_2$, 64 sccm) as the dopant source gas. The resistivity of the poly SiC films with a 1,530 ${\AA}$ thickness was 32.7 ${\Omega}-cm$ and decreased to 0.0129 ${\Omega}-cm$ at 16,963 ${\AA}$. The measurement of the resistance variations at different thicknesses were carried out within the $25^{\circ}C$ to $350^{\circ}C$ temperature range. While the size of the resistance variation decreased when the films thickness increased, the linearity of the resistance variation improved. Micro heaters and RTD sensors were fabricated on a $Si_3N_4$ membrane by using poly 3C-SiC with a 1um thickness using a surface MEMS process. The heating temperature of the SiC micro heater, fabricated on 250 ${\mu}m$${\times}$250 ${\mu}m$ $Si_3N_4$ membrane was $410^{\circ}C$ at an 80 mW input power. These 3C-SiC heaters and RTD sensors, fabricated by surface MEMS, have a low power consumption and deliver a good long term stability for the various thermal sensors requiring thermal stability.

Strawberry, Garlic and Kale Consumption Increase Urinary Excretion of Dimethylamine and Trimethylamine in Humans

  • Chung, Mi-Ja;Lee, Soo-Jung;Shin, Jung-Hye;Sung, Nak-Ju
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.19-23
    • /
    • 2003
  • Dimethylamine (DMA) is the immediate precursor of carcinogenic N-nitrosodimethylamine (NDMA). In vitro and in vivo experiments using whole strawberries, and garlic and kale juices were conducted to determine concentrations of DMA and trimethylamine (TMA) in foods and urine. Experimental diets [an amino-rich diet as nitrosatable precursors in combination with added nitrate-containing drinking water without (TD1) or with whole strawberries or garlic or kale juices (TD2, TD3 and TD4, respectively), or a diet of low in nitrate and amino (TD5) were incubated in simulated saliva and gastric juices at 37$^{\circ}C$ for 1 hour. We also studied the urinary excretion of DMA and TMA after consumption of the experimental diets (TD1~TD5). Urine samples were obtained for 18 hrs after consumption of experimental diets and concentrations of DMA and TMA were measured in the digested diet and urine. The DMA concentration after incubation in experimental diets (TD1~TD5) was 4.7$\pm$0.3, 6.7 $\pm$0.2, 7.9$\pm$0.2, 7.1$\pm$0.2 and 0.3$\pm$0.1 mg/kg, respectively. Urinary excretion of DMA (TD1~TD5) was 22.0$\pm$5.0, 28.3$\pm$4.3, 29.2$\pm$4.1, 27.4$\pm$4.5 and 20.4$\pm$3.1 mg/18 hr, respectively. Consumption diets with added strawberries or juices of kale or garlic increased urinary TMA and DMA, suggesting that those precursors were excreted and not converted to the carcinogen, NMDA.

Synthesis of $Ba(Mg_{1/3}Ta_{2/3})O_3$ Nanopowders by Glycothermal Process

  • Badrakh, Amar;Cho, Hong-Chan;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.167-168
    • /
    • 2009
  • Phase pure barium magnesium tantalate $Ba(Mg_{1/3}Ta_{2/3})O_3$(BMT) nanopowders were synthesized at temperature as low as $220^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$, $Mg(NO_3){\cdot}6H_2O$, and $TaCl_5$ as precursors and 1,4-butandiol as solvent. XRD, SEM, and TGA data support that glycothermal processing method provides a simple low temperature route for producing fine grained BMT nanopowders without alkaline mineralizers. BMT nanopowders synthesized at $220^{\circ}C$ showed more homogenous with rounded morphologies.

  • PDF

Production of Vinblastine by Chemical Coupling of Vindoline Extracted from Cultivated Plants and Catharanthine from Hairy Root Cultures in Vinca(Catharanthine roseus) (일일초 잎과 모상근으로부터 추출한 Vindoline과 Catharanthine의 화학결합에 의한 Vinblastine 생산)

  • 곽상수;정경희
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.110-114
    • /
    • 1993
  • Vinblastine, an anticancer agent was produced by chemical coupling of two different monomeric indole alkaloids, vinblastine and catharanthine in the presence of ferric ion. Vindoline was efficiently extracted from the leaves of vinca (Cafharanthus roseus) by using supercritical carbon dioxide, whereas catharanthine was chemically extracted from the in vitro cultured hairy roots. The extracted crude monomeric precursors were purified by a two-step preparative TLC. The coupling reaction was carried out in the 0.1M glycine buffer(pH 2.0, 5ml) containing 40mM FeC13 with purified vindoline(0.3mg) and catharanthine(0.3mg) at 4$^{\circ}C$. The production yields (weight %) of vinblastine and 3', 4'-anhy-drovinblastine in the products were 23.2 and 26.0, respectively. The produced vinblastine was confirmed by FAB-MS.

  • PDF

Crystallization of srAl2O4 Synthesized by the Polymerized Complex Method (착체중합법으로 합성한 srAl2O4의 핵생성 관찰)

  • 김형준;박정현
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.439-443
    • /
    • 2004
  • SrAl$_2$O$_4$ powder was prepared by polymerized complex method and its nucleation was observed at different temperatures and times. Problems of inhomogeneity and high synthesis temperature induced by solid state reaction could be solved by using polymeric precursors. The process of decomposition by heat treatment above 40$0^{\circ}C$ was observed by Scanning Electron Microscopy (SEM) and elemental analyzer. Crystallization of SrAl$_2$O$_4$ occured at about 90$0^{\circ}C$ and its crystalline size. which was determined by using Transmission Electron Microscopy (TEM) and X-Ray Diffractometer (XRD). was about 30∼50 nm.

Nanostructured Bulk Ceramics (Part IV. Polymer Precursor Derived Nanoceramics)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.205-209
    • /
    • 2010
  • In the last (fourth) section, the discussion will entail a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method.