• Title/Summary/Keyword: $CO_2/N_2$ separation factor

Search Result 29, Processing Time 0.019 seconds

Synthesis and Characterization of Zeolite Composite Membranes (II): Synthesis and $CO_2$ Separation Efficiency of ZSM-5 Zeolite Composite Membranes (제올라이트 복합 분리막의 합성 및 특성화(II): ZSM-5 제올라이트 복합막의 합성 및 $CO_2$ 분리 효율)

  • 현상훈;송재권;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.747-757
    • /
    • 1997
  • ZSM-5 zeolite composite membranes have been synthesized from a silica sol solution containing TPABr as an organic template by the dip-coating and the pressurized-coating hydrothermal treatment techniques. The CO2 separation efficiency of synthesized composite membranes was also investigated. The permeation mechanism of CO2 through ZSM-5 membranses was the surface diffusion, and that of N2, O2, and He gases was Knudsen diffusion or activated diffusion depending on the synthetic method of membranes and the measurement temperature. The CO2/N2 separation factor of the membrane prepared by the dip-coating hydrothermal treatment was 2.5 at about 12$0^{\circ}C$, while the ZSM-5 composite membrane synthesized by the pressurized-coating hydrothermal treatment technique showed the CO2/N2 separation factor of 9.0 at room temperature higher than that ever reported in the literature.

  • PDF

Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Hyun, Sang-Hoon
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • A faujasite NaY zeolite membrane was prepared on a tubular ${\alpha}-Al_2O_3$ support by the secondary growth process, and effects of permeation test conditions on the $CO_2/N_2$ separation were investigated. A NaY zeolite membrane with good $CO_2/N_2$ separation was successfully synthesized by using the hydrothermal solution ($Al_2O_3:SiO_2:Na_2O:H_2O$ = 1:6:14:840 in a molar base): at a permeation temperature of $30^{\circ}C$, its $CO_2$ permeance and $CO_2/N_2$ separation factor were $2.5{\times}10^{-7}mol/m^2secPa$ and 34, respectively. The $CO_2$ and $N_2$ permeations were highly dependent on permeation test conditions (feed composition, feeding rate, feed pressure, He sweeping rate and permeation temperature). The results indicated that (i) $CO_2$ and $N_2$ permeations through NaY zeolite membrane are governed by surface and micropore diffusions, respectively, (ii) the preparation of NaY zeolite membrane with a large permeating area is one of the most difficult hurdles for its real applications, and (iii) the retardation of $N_2$ permeation is an effective key to improve $CO_2/N_2$ separation factor in NaY zeolite membrane.

A Simultaneous Improvement in $CO_2$ Flux and $CO_2/N_2$ Separation Factor of Sodium-type FAU Zeolite Membranes through 13X Zeolite Beads Embedding (13X 제올라이트 흡착제 충진에 의한 Na형 Faujasite 제올라이트 분리막의 $CO_2/N_2$ 선택도 및 $CO_2$ 투과도 동시 증가 현상)

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Moon, Jong-Ho;Lee, Chang-Ha
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.269-275
    • /
    • 2007
  • Sodium type faujasite(FAU) zeolite membranes with a thickness of 5${\mu}m$ and a Si/Al molar ratio of 1.5 were prepared by the secondary growth process. The $CO_2/N_2$ separation in the vacuum mode was investigated at $30^{\circ}C$ for an equimolar $CO_2-N_2$ mixed gas before and after embedding 13X zeolite beads in the permeate side. The embedded 13X zeolite beads improved both $CO_2$ permeance and $CO_2/N_2$ separation factor, simultaneously. The phenomenon was explained by an increment in the $CO_2$ desorption rate at the FAU zeolite/$\alpha-Al_2O_3$ phase boundary due to an enhanced $CO_2$ escaping through the pore channels of the $\alpha-Al_2O_3$ support layer. In the present paper, it will be emphasized that a hybridization of a membrane with an adsorbent can provide a key to break through the trade-off between permeance and separation factor, generally shown in a membrane separation.

Gas Pemeation of pure $CO_{2}$ and $N_{2}$ through plasma-Treated Polypropylene Membranes

  • Lee, Woo-Sup;Rew, Dae-Sun;Bae, Seong-Youl;Kumazawa, Hidehiro
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 1999
  • The surface of polypropylene membrane was modified by plasma treatment using Ar,$N_{2}$, $NH_{2}$ and $O_{2}$ Permeabilities for $CO_{2}$, $N_{2}$ and separation factor for $CO_{2}$ relative to $N_{2}$ were measured. The permeation experiments were performed by a variable volume method at $25^{\circ}C$ and 0.303MPa. The effects of the plasma conditions such as treatement time power input gas flow rate and pressure in the reactor on the transport properties of modified membrane were investigated. The surface of the plasma treated membrane was analyzed by means of FTIR-ATR XPS and AFM. The surface structure of the plasma treated membrane was fairly different from that of the untreated membrane. Although the permeation rates for both $CO_{2}$ and $N_{2}$ decreased with increasing plasma treatement time the separation factor was found to be improved by the plasma treatement. The operating conditions of plasma treatement imposed on membranes had notable effect on the permeability and separation factor.

  • PDF

A Study on the Separation of $CO_2$from Flue Gas by Chemical Absorption (화학흡수법에 의한 연소폐가스 중 지구온난화 가스 $CO_2$분리에 관한 연구)

  • 안성우;김영국;송호철;박진원
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.203-211
    • /
    • 1997
  • This study is on the separation of Global warming effect gas, CO$_2$by chemical absorption from mixture of CO$_2$-N$_2$which was modeled after flue gas of fire power plant. Investigation of optimum condition for absorbent was carried out by using sparged vessel apparatus. Through packed tower experiments, applicabilities of two absorption models were tested by comparing experimental results with theoretical values. Absorbent used in the experiments was Monoethanolamine (MEA) and gas mixture was made in the mole composition of 15% CO$_2$and 85% N$_2$. Through estimations of CO$_2$loading and CO$_2$removal efficiency, optimum concentration of absorbent was found in the range of 4-5 M. To find a rate of absorption, an enhancement factor was introduced. Values of rate of absorption were calculated by Film model and Higbie model, respectively. Higbie model showed good agreement with experimental results. Therefore, this models is considered to be applicable to the CO$_2$separation process for flue gas from fire power plant.

  • PDF

Study on the Preparation of Inorganic Composite Membrane and Characteristics of Gas Separation of Zirconium Modified Polycarbosilane via Pyrolysis (지르코늄 혼성 폴리카르보실란의 열분해에 의한 무기 복합막 제조 및 기체분리 특성 연구)

  • Kang, Phil Hyun;Lee, Kew Ho;Yang, Hyun Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1099-1103
    • /
    • 1999
  • The surface of an ${\alpha}$-alumina tube was coated with zirconium modified polycarbosilane(PZC) by dip-coating method. Then the tube was pyrolyzed at 573~823 K. The prepared inorganic composite membrane was in $1{\mu}m$ thickness and had no pinholes larger than several nm. For the pyrolyzed inorganic composite membrane, the permeation test of He, $N_2$, $CO_2$, and $O_2$ was performed at 303~423 K. The gas permeation and separation factor were increased with increasing permeation temperature. The permeation for gases was controlled by the activated diffusion mechanism. The separation factor of $CO_2$, to $N_2$was 4.9 at 363 K on the composite membrane pyrolyzed at 823 K and its value was higher than that of He and $O_2$.

  • PDF

Gas Permeation Properties of Sulfonated 6FDA-based Polyimide Membranes (설폰화된 6FDA계 폴리이미드 막을 이용한 기체투과특성)

  • Rhim, Ji-Won;Yoon, Seok-Won;Lee, Byung-Seong;Lee, Bo-Sung;Cheong, Seong-Ihl
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.237-243
    • /
    • 2009
  • Polyimides synthesized by using 2,2'-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and 4,4'-diaminodiphenylmethane (DAM) were sulfonated according to reaction times, 5 min to 20 min. And the resulting polyimide membranes were investigated in terms of permeability and separation factor for $N_2$, $O_2$, and $CO_2$ gases. The introduction of bulky group, $-{SO_3}H$, leads to the decreases of both diffusivities and solubilities for all the range of reaction times. At 20 min of sulfonation, the diffusivity and solubility of $N_2$ decrease up to 21% and 26%, respectively. Overall separation efficiencies for $O_2/N_2$ and $CO_2/N_2$ increase as the reaction time increases to 20 min.

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

Separation of Gas Based on PTMSP-silica-PEI Composites (PTMSP-silica-PEI 복합막에 의한 기체 분리에 관한 연구)

  • Kang Tae-Bum;Hong Se-Lyung
    • Membrane Journal
    • /
    • v.16 no.2
    • /
    • pp.123-132
    • /
    • 2006
  • The PTMSP-silica-PEI composite membranes were synthesized from tetraethoxysilane (TEOS) and poly (1-trimethylsilyl-1-propyne) (PTMSP) by sol-gel process. The PTMSP-silica nanocomposite membranes were characterized by $^1H-NMR$, FT-IR, TGA, XPS, SEM, GPC and gas permeation measurements were accomplished with $H_2,\;O_2,\;N_2,\;CO_2,\;CH_4$. The gases permeability increased with increasing TEOS content. Both the permeability and selectivity of $H_2,\;CH_4$ increased to 15 wt% TEOS. While the permeability of $O_2,\;CO_2$ increased without decrease of selectivity.

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.