• Title/Summary/Keyword: $CO_2/CH_4$

Search Result 1,095, Processing Time 0.02 seconds

Development of Radiosynthetic Methods of 18F-THK5351 for tau PET Imaging (타우 PET영상을 위한 18F-THK5351의 표지방법 개발)

  • Park, Jun-Young;Son, Jeong-Min;Chun, Joong-Hyun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.51-54
    • /
    • 2018
  • Purpose $^{18}F-THK5351$ is the newly developed PET probe for tau imaging in alzheimer's disease. The purpose of study was to establish the automated production of $^{18}F-THK5351$ on a commercial module. Materials and Methods Two different approaches were evaluated for the synthesis of $^{18}F-THK5351$. The first approach (method I) included the nucleophilic $^{18}F$-fluorination of the tosylate precursor, subsequently followed by pre-HPLC purification of crude reaction mixture with SPE cartridge. In the second approach (method II), the crude reaction mixture was directly introduced to a semi-preparative HPLC without SPE purification. The radiosynthesis of $^{18}F-THK5351$ was performed on a commercial GE $TRACERlab^{TM}$ $FX-_{FN}$ module. Quality control of $^{18}F-THK5351$ was carried out to meet the criteria guidelined in USP for PET radiopharmaceuticals. Results The overall radiochemical yield of method I was $23.8{\pm}1.9%$ (n=4) as the decay-corrected yield (end of synthesis, EOS) and the total synthesis time was $75{\pm}3min$. The radiochemical yield of method II was $31.9{\pm}6.7%$ (decay-corrected, n=10) and the total preparation time was $70{\pm}2min$. The radiochemical purity was>98%. Conclusion This study shows that method II provides higher radiochemical yield and shorter production time compared to the pre-SPE purification described in method I. The $^{18}F-THK5351$ synthesis by method II will be ideal for routine clinical application, considering short physical half-life of fluorine-18 ($t_{1/2}=110min$).

Changes and Improvements of the Standardized Eddy Covariance Data Processing in KoFlux (표준화된 KoFlux 에디 공분산 자료 처리 방법의 변화와 개선)

  • Kang, Minseok;Kim, Joon;Lee, Seung-Hoon;Kim, Jongho;Chun, Jung-Hwa;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.5-17
    • /
    • 2018
  • The standardized eddy covariance flux data processing in KoFlux has been updated, and its database has been amended accordingly. KoFlux data users have not been informed properly regarding these changes and the likely impacts on their analyses. In this paper, we have documented how the current structure of data processing in KoFlux has been established through the changes and improvements to ensure transparency, reliability and usability of the KoFlux database. Due to increasing diversity and complexity of flux site instrumentation and organization, we have re-implemented the previously ignored or simplified procedures in data processing (e.g., frequency response correction, stationarity test), and added new methods for $CH_4$ flux gap-filling and $CO_2$ flux correction and partitioning. To evaluate the effects of the changes, we processed the data measured at a flat and homogeneous paddy field (i.e., HPK) and a deciduous forest in complex and heterogeneous topography (i.e., GDK), and quantified the differences. Based on the results from our overall assessment, it is confirmed that (1) the frequency response correction (HPK: 11~18% of biases for annually integrated values, GDK: 6~10%) and the stationarity test (HPK: 4~19% of biases for annually integrated values, GDK: 9~23%) are important for quality control and (2) the minimization of the missing data and the choice of the appropriate driver (rather than the choice of the gap-filling method) are important to reduce the uncertainty in gap-filled fluxes. These results suggest the future directions for the data processing technology development to ensure the continuity of the long-term KoFlux database.

Combustion Characteristics of Cow Manure Pellet as a Solid Fuel Source (고체연료원으로서의 우분 펠릿 연소특성)

  • Jeong, Kwang-Hwa;Lee, Dong-jun;Lee, Dong-Hyun;Lee, Sung-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • In Korea, 51,013 thousand tons of livestock manure was generated in 2018. A total of 46,530 thousand tons, which is 91.2% of the total amount of livestock manure generated, was treated by composting(40,647 thousand tons) or liquid fertilization(5,884 thousand tons) method. At present, the policy of livestock manure treatment in Korea is to make livestock manure into organic fertilizer(compost, liquid fertilizer) and then to applicate it on agricultural land. And this policy is very effective in terms of livestock manure treatment and nutrient recycling. However, considering the steadily declining farmland area for decades, the use of livestock manure compost could be limited in the future. There is also concern that local nutrient overloading, nutrient management regulation, and restrictions on the number of livestock may become serious problem for livestock manure treatment. In addition, there are some opinions that nutrient derived from livestock manure may flow into tributaries of major dams. In recent years, there has been a suspicion that fine dust may be generated from livestock manure compost. In recent years, the use of livestock manure fertilizer has been rapidly increasing, there is a growing demand of the development of new technologies for livestock manure treatment. Especially, cow excretes a larger amount of manure than other livestock, so that the efficiency of development of new technology for cow manure treatment will be high. Therefore, in this study, the combustion characteristics of cow manure pellet were investigated in order to analyzed whether cow manure could be used as source of solid fuel. During the combustion test, the weight loss of the cow manure pellet began to increase when the temperature of the combustion chamber reached $300^{\circ}C$. The ratio of $H_2$, $CH_4$, CO in the pyrolysis gas produced in the pyrolysis process of cow manure pellet were 6.65~11.62%, 0.58~1.54 and 11.47~14.07%, respectively.

Effects of Dried Whole Crop Barley Treated with Cellulolytic Microorganisms on In Vitro Fermentation Characteristics in Swine (섬유소 분해균을 이용한 건조 청보리 발효사료가 돼지의 In vitro 발효 특성에 미치는 영향)

  • Park, Do-Yeun;Park, Joong-Kook;Cho, Sung-Back;Kim, Chang-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • The experiment was conducted to observe the effects of dried whole crop barley treated with cellulolytic microorganisms (Aspergillus niger KCCM 60357 and Bacillus licheniformis KCCM 40934) on the chemical composition, in vitro colonic fermentation and whole tract digestibility in swine. Whole crop barley were fermented with no microorganism addition (control), A. niger, B. licheniformis and co-culture of A. niger and B. licheniformis (Mixture) for 3 days at $30^{\circ}C$. In the feed chemical composition, CP contents of whole crop barley treated with A. niger (7.52%) and B. licheniformis (7.77%) were significantly higher than control (6.81%) (p<0.05). The in vitro colonic fermentation of dried whole crop barley fermented with control showed significantly higher $CH_4$ contents than A. niger, B. licheniformis and Mixture at 18h incubation (p<0.05). Dry matter (DM) digestibilities of A. niger (55%) and Mixture (57.42%) treatments were significantly higher than control (43.74%) (p<0.05). Ammonia-N was significantly increased in A. niger, B. licheniformis and Mixture relative to control at 24 hour incubation (p<0.05). Xylanase activities in A. niger, B. licheniformis and Mixture treatments were significantly higher than control at 24 hour incubation (p<0.05). Concentrations of total VFA were significantly increased in B. licheniformis (12.61 mM) at 24hour incubation (p<0.05). In vitro whole tract digestibility was significantly increased in B. licheniformis (49.61%) compared with the control (45.65%) (p<0.05). In conclusion, whole crop barley treated with cellulolytic microorganisms improved whole tract digestibility and colonic fermentation for swine.

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.