• Title/Summary/Keyword: $CO_2$sensor

Search Result 913, Processing Time 0.034 seconds

Atmosphere and Green Pepper Quality Influenced by Active Air Flushing in Fresh Produce Container Controlled in Real-time $O_2$ Concentration (실시간 $O_2$ 농도 제어 풋고추 용기에서 능동기체치환 시스템이 기체조성과 품질보존에 미치는 효과)

  • Jo, Yun Hee;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.2
    • /
    • pp.29-33
    • /
    • 2014
  • Active air flushing mini-pumps were installed in a rigid polypropylene container ($32cm{\time}23cm{\time}18cm$) containing 900 g of fresh green peppers for effectively controlling its $O_2$ concentration on real time basis to preserve the product quality. The performance of the constructed system was compared to that of the modified atmosphere (MA) container system with gas diffusion tube controlled in close/open cycles responding to real time $O_2$ concentration at 10 and $20^{\circ}C$. In the control logic, the $O_2$ concentration was programmed to be located exactly at 13% or stay in the range of 13-15%. The active air flushing system could control the $O_2$ concentration in the desired level or range at both temperatures, while the passive diffusion system could work only under the low temperature condition of $10^{\circ}C$. At higher temperature of $20^{\circ}C$, the passive diffusion system could not manage the produce respiration increased more highly than the gas transfer through the diffusion tube, resulting in too low $O_2$ concentration and too high $CO_2$ concentration which would be injurious to the green pepper. When tested at $20^{\circ}C$, the MA container system could preserve the green pepper better than the perforated air package in terms of weight loss, ascorbic acid and chlorophyll contents and firmness.

  • PDF

Development of a Laser Absorption NO/$NO_2$ Measuring System for Gas Turbine Exhaust Jets

  • Zhu, Y.;Yamada, H.;Hayashi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.802-806
    • /
    • 2004
  • For the protection of the local air quality and the global atmosphere, the emissions of trace species including nitric oxides (NO and NO$_2$) from gas turbines are regulated by local governments and by the International Civil Aviation Organization. In-situ measurements of such species are needed not only for the development of advanced low-emission combustion concepts but also for providing emissions data required for the sound assessment of the effects of the emissions on environment. We have been developing a laser absorption system that has a capability of simultaneous determination of NO and NO$_2$concentrations in the exhaust jets from aero gas turbines. A diode laser operating near 1.8 micrometer is used for the detection of NO while a separated visible tunable diode laser operating near 676 nanometers is used for NO$_2$. The sensitivities at elevated temperature conditions were determined for simulated gas mixtures heated up to 500K in a heated cell of a straight 0.5 m optical path. Sensitivity limits estimated as were 30 ppmv-m and 3.7 ppmv-m for NO and NO$_2$, respectively, at a typical exhaust gas temperature of 800K. Experiments using the simulated exhaust flows have proven that $CO_2$ and $H_2O$ vapor - both major combustion products - do not show any interference in the NO or NO$_2$ measurements. The measurement system has been applied to the NO/NO$_2$ measurements in NO and NO$_2$ doped real combustion gas jets issuing from a rectangular nozzle having 0.4 m optical path. The lower detection limits of the system were considerably decreased by using a multipass optical cell. A pair of off-axis parabola mirrors successfully suppressed the beam steering in the combustion gas jets by centralizing the fluctuating beam in sensor area of the detectors.

  • PDF

Recent Research Trends of Process Monitoring Technology: State-of-the Art (공정 모니터링 기술의 최근 연구 동향)

  • Yoo, ChangKyoo;Choi, Sang Wook;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.233-247
    • /
    • 2008
  • Process monitoring technology is able to detect the faults and the process changes which occur in a process unpredictably, which makes it possible to find the reasons of the faults and get rid of them, resulting in a stable process operation, high-quality product. Statistical process monitoring method based on data set has a main merit to be a tool which can easily supervise a process with the statistics and can be used in the analysis of process data if a high quality of data is given. Because a real process has the inherent characteristics of nonlinearity, non-Gaussianity, multiple operation modes, sensor faults and process changes, however, the conventional multivariate statistical process monitoring method results in inefficient results, the degradation of the supervision performances, or often unreliable monitoring results. Because the conventional methods are not easy to properly supervise the process due to their disadvantages, several advanced monitoring methods are developed recently. This review introduces the theories and application results of several remarkable monitoring methods, which are a nonlinear monitoring with kernel principle component analysis (KPCA), an adaptive model for process change, a mixture model for multiple operation modes and a sensor fault detection and reconstruction, in order to tackle the weak points of the conventional methods.

Development of Left Turn Response System Based on LiDAR for Traffic Signal Control

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.181-190
    • /
    • 2022
  • In this paper, we use a LiDAR sensor and an image camera to detect a left-turning waiting vehicle in two ways, unlike the existing image-type or loop-type left-turn detection system, and a left-turn traffic signal corresponding to the waiting length of the left-turning lane. A system that can efficiently assign a system is introduced. For the LiDAR signal transmitted and received by the LiDAR sensor, the left-turn waiting vehicle is detected in real time, and the image by the video camera is analyzed in real time or at regular intervals, thereby reducing unnecessary computational processing and enabling real-time sensitive processing. As a result of performing a performance test for 5 hours every day for one week with an intersection simulation using an actual signal processor, a detection rate of 99.9%, which was improved by 3% to 5% compared to the existing method, was recorded. The advantage is that 99.9% of vehicles waiting to turn left are detected by the LiDAR sensor, and even if an intentional omission of detection occurs, an immediate response is possible through self-correction using the video, so the excessive waiting time of vehicles waiting to turn left is controlled by all lanes in the intersection. was able to guide the flow of traffic smoothly. In addition, when applied to an intersection in the outskirts of which left-turning vehicles are rare, service reliability and efficiency can be improved by reducing unnecessary signal costs.

Synthesis of 18F-labeled Novel Phosphonium cations as PET Myocardial Perfusion Imaging Agents: Pilot Imaging Studies

  • Ayoung Pyo;Jung-Joon Min;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • The development of myocardial perfusion imaging (MPI) agents has been motivated because coronary artery disease has been one of the leading causes of death worldwide since the 1960s. Several positron emission tomography (PET) MPI agents were developed, and 18F-labeled phosphonium cations were reported actively among them. In this study, we synthesized novel 18F-labeled phosphonium cations, (5-[18F]fluoropentyl)diphenyl(pyridin-2-yl)phosphonium and (2-(2-[18F]fluoroethoxy)ethyl)diphenyl(pyridin-2-yl)phosphonium, and evaluated potential as MPI agents. Two labeled compounds were synthesized via nucleophilic substitution reactions of 18F-fluoride with the appropriate tosylate precursor in the presence of Kryptofix 2.2.2 and K2CO3. MicroPET studies were performed in normal rats to evaluate in vivo distribution of radiolabeled phosphonium cations for 60 min. The radiolabeled compounds were synthesized with 5%-10% yield. The radiochemical purity of labeled compounds was > 98% by analytical HPLC, and the specific activity was > 11.8 GBq/µmol. The result of microPET studies of these labeled compounds in rats showed intense uptake in the myocardium at 30 and 60 min. The results suggest that these 18F-labeled novel phosphonium cations would have potential as promising candidates for myocardial perfusion imaging.

Development of a Micromachined Differential Type Resonant Accelerometer and Its Performance

  • Hyun, Chul;Lee, Jang-Gyu;Kang, Tae-Sam;Sung, Sang-Kyung;Seok, Seon-Ho;Chun, Kuk-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2182-2186
    • /
    • 2003
  • This paper presents the differential type resonant accelerometer (DRXL) and its performance test results. The DRXL is the INS grade, surface micro-machined sensor. The proposed DRXL device produces a differential digital output upon an applied acceleration, and the principle is a gap-dependent electrical stiffness variation of the electrostatic resonator with torsion beam structures. Using this new operating concept, we designed, fabricated and tested the proposed device. The final device was fabricated by using the wafer level vacuum packaging process. To test the performance of the DRXL, a nonlinear self-oscillation loop is designed using describing function technique. The oscillation loop is implemented using discrete electronic elements. The performance test of the DRXL shows that the sensitivity of the accelerometer is 12 Hz/g and its long term bias stability is about $2mg(1{\sigma})$. The turn on repeatability, bandwidth, and dynamic range are 4.38 mg, 100 Hz, and ${\pm}\;70g$, respectively.

  • PDF

The Characteristics of Visibility Measured by Forward Scattering Meter on Summertime in Pusan (Forward Scattering Meter 측정에 의한 부산의 하계 시정 특성)

  • 김유근
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.385-388
    • /
    • 2000
  • Visibility reduction is a barometer of air pollution which people can notice easily. First of all we need to measure quantified visibility continuously in order to examine visibility reduction. Prevailing visibility is not practical to measure visibility depending on observer's expertness. Scattering visibility using Forward Scattering Meter(Belfort Visibility Sensor 6230) has been measured at Kwangan-Dong in Pusan and analysed since July 1998. According to the analysis the correlation coefficient(R) between prevailing visibility and scattering visibility was 0.7235. The visibility appeared that each frequency of poor visibility(under 6km) and good visibility(over 25km) was 10.6%, 9.7% on summertime in Pusan and the visibility range from 10km to 20km ranked high frequency as a half of whole ranges. The order of correlation coefficients between visibility an air pollutants are ranking CO. PM10 and NO2 that values are 0.5878, 0.5369,l 0.5284 respectively. In meteorolgical factor the case of poor visibility presented more weakly wind speed and higher relative humidity than the case of good visibility. The correlation coefficient between calculated visibility of multiple linear regression model and observed visibility was 0.7215. But the trend of calculated and observed visibility variation was similar with the exception of several good visibility cases.

  • PDF

DEVELOPMENT OF QUALITY EVALUATION SYSTEM FOR PEANUT WITH POD USING OPTICAL METHODS

  • Morta, Kazuo;Taharazako, Shoji;Zhang, Han;Maekaji, Kenji;Ikeda, Hirohiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1354-1363
    • /
    • 1993
  • Optical methods were developed to examine their feasibility for quality evaluation of peanut with pod. Surface color and internal quality of peanut were measured without contact. The surface color of peanut was measured by light reflectance at a region of visible wavelengths. Its characteristic was high correlated with a visual grading of peanut. A trial machine for the color grading of peanut was developed using an optical sensor and it was considered to compare with the visual grading. The spectral reflectance at a region of near infrared wavelengths from 1,200 to 2,500nm was measured , and the chemical components of peanut were related to spectral reflectance at special wavelengths. The protein, fat and moisture contents of peanut were estimated by the near infrared methods. An infrared imaging method was developed to evaluate the internal quality of peanut with pod. As thermal characteristic of peanut with pod was deeply related to internal quality , the quality of peanut can be evaluated by temperature changes on the surface of peanut. Measurement of surface color, near infrared reflectance and thermal imaging were shown to be very effective in grading of peanut with pod.

  • PDF

The Proposed of Emergency Light Monitoring System by Self-Organization Radio Communication based on USN (USN기반 자율무선통신방식 비상등관리시스템 제안)

  • Choi, Jae-Myeong;Kang, Heau-Jo;Lee, Sang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.252-256
    • /
    • 2009
  • In this paper, the emergency light where is being scattered always inspection and will be able to manage from the management center. Is not interfered in data neck of a bottle actual condition and the data communication will be possible and the cluster monitor network will grow and uses establishes the emergency light monitoring system. Will not be interfered in location of emergency light and not to be will be able to establish the system. And the monitoring network there is by a destroyer and the communication relay system is born breakdown but the dead zone without condition of emergency light proposes the emergency light management system where the monitoring and management are possible.

  • PDF

Design and Implementation of Integration Control Monitoring System for Fully Artificial Plant Factory based on Sensor Network (센서 네트워크 기반 완전제어형 식물공장의 통합 제어 모니터링 시스템 설계 및 구현)

  • Kim, Hyung-Sun;Kwon, Sook-Youn;Ryu, Jae-Bok;Yu, Tae-Hwan;Lim, Jae-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.679-682
    • /
    • 2011
  • 본 논문에서는 완전제어형 식물공장에서 작물이 생육하는데 필요한 재배환경들의 모니터링 및 제어가 가능한 센서 네트워크 기반의 식물공장 통합 제어 시스템을 설계 및 구축한다. 제안한 시스템은 완전제어형 식물공장에서 각 재배단의 환경 정보를 수집하기 위해 통합 환경정보 센서 및 전력 제어 센서를 설치하고, 통합 컨트롤러를 통해 LED 조명의 제어가 가능하도록 설계 하였다. 환경정보 센서는 온도, 습도, CO2의 데이터가 실시간으로 수집되며 전력제어 센서는 실시간 사용되는 전력량 데이터가 수집 가능하며 센서를 통해 전력의 차단 및 공급이 가능하도록 설계 하였다. 본 시스템은 크게 모니터링과 제어로 구분되며 테스트 베드의 구축을 통해 실시간 환경정보 센서 데이터 수집이 가능하고, LED 조명 및 전력을 제어가 가능함을 확인하였다.

  • PDF