• Title/Summary/Keyword: $CO_2$decomposition

Search Result 590, Processing Time 0.028 seconds

CO2 Decomposition with Waste Ferrite (폐기물 페라이트를 이용한 CO2분해)

  • 신현창;김진웅;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.146-152
    • /
    • 2003
  • The waste ferrites from magnetic core manufacturing process were used to $CO_2$gas decomposition to avoid the greenhouse effects. The waste ferrites are the mixed powder of Ni-Zn and Mn-Zn ferrites core. In the reduction of ferrites by 5% $H_2/Ar$ mixed gas, the weight loss of ferrites was about 14~16wt%. After the$CO_2$gas decomposition reaction, the weight of the reduced ferrites was increased up to 11wt%.$CO_2$gas was decomposed by oxidation of Fe and FeO in reduced compound and the phase of the waste ferrite was changed to spinel structure. A new technique capable of$CO_2$decomposition as low cost process through utilizing waste ferrite was development.

Decomposition Characteristics of Carbon Dioxide Using Magnetite and Inorganic Sludge (Magnetite와 무기성 슬러지의 이산화탄소 분해 특성)

  • Park, Joon-Seok;Jeon, Jea-Yeoul;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.344-352
    • /
    • 2010
  • Magnetite and inorganic sludge were mainly composed of $Fe_2O_4$ and $Fe_2O_3$, respectively. Initial specific surface areas of magnetite and inorganic sludge were 130 $m^2$/g and 31.7 $m^2$/g. $CO_2$ decomposition rate for inorganic sludge was increased with temperature. Maximum $CO_2$ decomposition rates were shown 89% for magnetite at $350^{\circ}C$ and 84% for inorganic sludge at $500^{\circ}C$. Specific surface area for magnetite was not varied significantly after $CO_2$ decomposition. However, specific surface area for inorganic sludge was greatly decreased from initial 130 $m^2$/g to approximately 50~60 $m^2$/g after reaction. Therefore, it was estimated that magnetite could be used for $CO_2$decomposition for a long time and inorganic sludge should be wasted after $CO_2$ decomposition reaction.

Decomposition of Carbon Dioxide Using Sr Ferrites with Various Compositions (다양한 조성의 Sr 페라이트를 이용한 CO2분해 반응 특성)

  • 신현창;최정철;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.191-197
    • /
    • 2003
  • Sr ferrites with various compositions were applied to the decomposition of $CO_2$ to mitigate the greenhouse effect. In the reduction reaction of Sr ferrites up to 80$0^{\circ}C$, starting temperature was lower with increasing of Sr content in Sr ferrite. However, the reactivity was higher with decreasing Sr content. In the $CO_2$ decomposition reaction with reduced Sr ferrites, the amount of CO and C were depended on the ratio of Sr and Fe in Sr ferrite. With increasing Sr content. larger amount of C were deposited on the surface of ferrite. Therefore, in order to apply Sr ferrites for the decomposition of $CO_2$, it is necessary to control the ratio of Sr and Fe according to the conditions used.

Improvement of $CO_2$Decomposition by Impregnating Noble Metals to Nano-size (Ni, Zn)-ferrites (귀금속 첨가에 의한 나노 (Ni, Zn)-페라이트의 $CO_2$분해 향상)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Gang, Gye-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.846-850
    • /
    • 2001
  • In the present study, nano-size powders of ternary ferrites, $Ni_{0.5}Zn_{0.5}Fe_2O_4$, as the potential catalysts of $CO_2$decomposition, were prepared by the wet processing of hydrothermal synthesis and coprecipitation method, and the catalyzing effects of impregnation of the noble metals, Pt and Pd, onto $Ni_{0.5}Zn_{0.5}Fe_2O_4$for the $CO_2$decomposition were investigated. XRD results of the synthesized ferrites showed a typical spinel structure of ferrite and the particle size was very small as about 6~10 nm. BET surface area of the ternary ferrites was not affected by the impregnation of Pt and Pd. The reactivity of the $CO_2$decomposition to carbon was improved by the impregnation of the noble metals of Pd and Pt. The effect of Pd-impregnation on the $CO_2$decomposition rate was higher than Pt-impregnation.

  • PDF

Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition (($CO_2$ 분해시 $LiMn_2O_4$의 상변화)

  • Kwoen, Tae-Hwan;Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Synthesis Processing of the Fine (Ni, Zn)-ferrite Powder for $CO_2$ Decomposition of the Flue Gas in the Iron Foundry (제철소의 연소배가스 $CO_2$ 분해용 (Ni, Zn)-ferrite 미세분말 합성공정 연구)

  • 김정식;안정률
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.164-167
    • /
    • 2000
  • Flue gases in the iron foundry consist of 15~20% CO2 as an air pollution gas whose emission should be mitigated in order to protect the environment. In the present study, ultrafine powders of NixZn1-xFe2O4 as a potential catalyst for the CO2 decomposition were prepared by the coprecipitation methods. Oxygen deficient ferrites (MeFe2O4-$\delta$) can decompose CO2 as C and O2 at a low temperature of about 30$0^{\circ}C$. The XRD result of synthesized ferrites showed the spinel structure of ferrites and ICP-AES and EDS quantitative analyses showed the composition similar with initial molar ratios of the mixed solution prior to reaction. The BET surface area of the (Ni, Zn)-ferrites was about 77~89.5$m^2$/g and their particle size was observed about 10~20 nm. The CO2 decomposition efficiency of the oxygen deficient (Nix, Zn1-x)-ferrites was the highest at x=0.3, and the ternary (Ni, Zn)-ferrites was better than that of binary Ni-ferrites.

  • PDF

Decomposition Models of the Organic Matters in Cultural Media and the Litters in Forest (배양액에서의 유기물분해와 식물군락에서의 낙엽분해에 관한 모델)

  • 이웅상;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.2
    • /
    • pp.119-129
    • /
    • 1995
  • Decomposition rates of glucose, starch, spinach leaves and litters in forests are calculated by equation dC dt=-kC(Co-1nC), dC- dt=$-kC^2$, and Olson's negative exponential decay model.dC dt = - kC =-kC(Co - InC) showed a very close fit to decomposition of the organic matters in cultural media by purified microorganisms and dC dt=$-kC^2$ to decomposition of the litters in forests. Key words: Organic matters, Cultural media, Glucose, Starch, Leaves, Litters.

  • PDF

Microstructural Characteristics of Thermally Sprayed WC-Co Coatings (Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성)

  • Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.

CO2 decomposition characteristics of Ni-ferrite powder (Ni-페라이트 분말을 이용한 CO2 분해 특성)

  • Nam, Sung-Chan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5376-5383
    • /
    • 2011
  • The objective of this study is the development of carbon-recycle technology, that converts carbon dioxide captured from flue gas to carbon monoxide or carbon for reuse in industrial fields. It is difficult to decompose $CO_2$ because $CO_2$ is very stable molecule. And then metal oxide was used as an activation agent or catalyst for the decomposition of $CO_2$ at low temperature. Metal oxides, which converts $CO_2$ to CO or C, were prepared using Ni-ferrite by solid state method and hydrothermal synthesis in this study. TPR/TPO and TGA were used as an analysis method to analyze the decomposition characteristics of $CO_2$. As the results, the reduction area of $H_2$ was high value at 15 wt% of NiO and the decomposition area of $CO_2$ was superior capacity at 5 wt% of NiO. However, TGA data showed contrary results that reduction area of $H_2$ was 28.47wt% and oxidation area by $CO_2$ was 26.95wt% at 2.5 wt% of NiO, one of the Ni-ferrite powders synthesized using solid state method. $CO_2$ decomposition efficiency was 94.66% and it is excellent results in comparison with previous studies.