• Title/Summary/Keyword: $CO_2$ utilization

Search Result 624, Processing Time 0.024 seconds

Effects of Application of Rendered Carcass Residue on Greenhouse Gases and Pepper Growth (랜더링된 가축사체 잔류물 시용이 온실가스 및 고추 생육에 미치는 영향)

  • Jae-Hyuk Park;Dong-Wook Kim;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.457-464
    • /
    • 2023
  • The rendering residue generated by rendering disposal, an eco-friendly livestock carcass disposal method, is a useful agricultural resource. Methods for recycling this are being actively researched, and this study investigated the impact of applying rendered residue directly to soil on crop productivity and the agricultural environment. The chemical properties of the rendering residue were examined. The pH, OM, T-N, T-P, CaO, K2O, and MgO content values were 5.47%, 59.8%, 9.22%, 2.96%, 2.16%, 0.51% and 0.10%, respectively. Treatment conditions were divided into control, inorganic fertilizer, and rendering residue, and rendering residue corresponding to 50, 100, and 200% nitrogen content was applied based on the amount of inorganic fertilizer nitrogen input. Greenhouse gases and ammonia were collected during the cultivation period. Rendering residue increased both the yield and growth of peppers and was effective in improving nutrients such as pH and OM of the soil after harvest. However, compared to inorganic fertilizer treatment, it increased emissions of nitrous oxide and methane as well as ammonia. It is judged that the direct agricultural use of rendering residue is difficult, and a utilization method is needed.

Semi-quantitative Risk Assessment using Bow-tie Method for the Establishment of Safety Management System of Hydrogen Fuel Storage Facility in a Combined Cycle Power Plant (복합화력발전소 내 수소연료 저장설비의 안전관리 체계 구축을 위한 Bow-tie 기법을 활용한 반정량적 위험성 평가)

  • Hee Kyung Park;Si Woo Jung;Yoo Jeong Choi;Min Chul Lee
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.2
    • /
    • pp.75-86
    • /
    • 2024
  • Hydrogen has been selected as one of the key technologies for reducing CO2 emissions to achieve carbon neutrality by 2050. However, hydrogen safety issues should be fully guaranteed before the commercial and widespread utilization of hydrogen. Here, a bow-tie risk assessment is conducted for the hydrogen fuel supply system in a gas turbine power plant, which can be a mass consumption application of hydrogen. The bow-tie program is utilized for a qualitative risk assessment, allowing the analysis of the causes and consequences according to the stages of accidents. This study proposed an advanced bow-tie method, which includes the barrier criticality matrix and visualized maps of quantitative risk reduction. It is based on evaluating the importance of numerous barriers for the extent of their impact. In addition, it emphasizes the prioritization and concentrated management of high-importance barriers. The radar chart of a bow tie allows the visual comparison of risk levels before/after the application of barriers (safety measures). The risk reduction methods are semi-quantitatively analyzed utilizing the criticality matrix and radar chart, and risk factors from multiple aspects are derived. For establishing a secure hydrogen fuel storage system, the improvements suggested by the bow-tie risk assessment results, such as 'Ergonomic equipment design to prevent human error' and 'Emergency shutdown system,' will enhance the safety level. It attempts to contribute to the development and enhancement of an efficient safety management system by suggesting a method of calculating the importance of barriers based on the bow-tie risk assessment.

A Study on the Production of Yeast Utilizing Ethanol as a Sole Carbon Source (Ethanol 이용 미생물에 의한 단세포 단백질 생산에 관한연구)

  • Lee, Ke-Ho;Ha, Jin-Hong
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1973
  • In order to obtain the basic informations on the production of single cell protein from ethanol, 145 yeast strains utilizing ethanol as a sole carbon source were isolated from 32 soil samples in Korea. A yeast strain showing the highest cell yield among the isolated strains was selected and identified. The optimum culture condition, utilization of other carbon sources and the cultural characteristics for the selected yeast, and the chemical analysis of the yeast cell composition, and utilization of ethanol by the selected yeast were investigated. All the culture was carried out in the shaking flasks. The results obtained were as follows: 1. The selected yeast strain was identified as Debaryomyces nicotianae-SNU 72. 2. The optimum composition of the medium for the selected yeast is : Ethanol 40 ml, Urea 0.5 g, Potassium phosphate (dibasic) 0.5 g, Ammoium phosphate (monobasic) 0.15 g, Magnesium sulfate 0.05 g, Calcium chloride 0.01g, Yeast extract 0.005 g, Tap water 1000 ml. 3. The optimum pH was 5.0-5.5, the optimum temperature $30-33^{\circ}C$ and the aerobic state was unimportant. 4. Utilization of methanol, n-propanol, iso-propanol, n-butanol, iso-butanol, tert-amyl alcohol and acetic acid by the selected yeast was very weak. So substitution of the subtrate was thought to be impossible. 5. Studies on the propagation of the yeast cells showed that the lag phase of the yeast cells lasted 16 hours, and the logarithmic growth phase extended 16 to 28 hours. The specific growth rate was about $0.19\;hr^{-1}$ and the doubling time was 3.6 hours during the logarithmic growth phase. 6. As the result of the chemical analysis of the dry yeast cells, the content rate of the crude protein was 55.19 %, the content of others was similar to the average content of the yeast component. 7. After 34 hours cultivation, under the optimum culture condition investigated, the dry cell yield against the amount of the added ethanol was 53.4 % (W/V%), the dry cell yield against the amount of the utilized ethanol was 73.6 % (W/V%), the evaporation rate of ethanol was about 19.1 %.

  • PDF

Analysis for Atomic Structural Deterioration and Electrochemical Properties of Li-rich Cathode Materials for Lithium Ion Batteries (리튬이차전지용 리튬과잉계 양극 산화물의 충방전 과정 중 원자 구조 열화 과정과 전기화학 특성에 대한 분석)

  • Park, Seohyeon;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Recently, various degradation mechanisms of lithium secondary battery cathode materials have been revealed. As a result, many studies on overcoming the limitation of cathode materials and realizing new electrochemical properties by controlling the degradation mechanism have been reported. Li-rich layered oxide is one of the most promising cathode materials due to its high reversible capacity. However, the utilization of Li-rich layered oxide has been restricted, because it undergoes a unique atomic structure change during the cycle, in turn resulting in unwanted electrochemical degradations. To understand an atomic structure deterioration mechanism and suggest a research direction of Li-rich layered oxide, we deeply evaluated the atomic structure of 0.4Li2MnO3_0.6LiNi1/3Co1/3Mn1/3O2 Li-rich layered oxide during electrochemical cycles, by using an atomic-resolution analysis tool. During a charge process, Li-rich materials undergo a cation migration of transition metal ions from transition metal slab to lithium slab due to the structural instability from lithium vacancies. As a result, the partial structural degradation leads to discharge voltage drop, which is the biggest drawback of Li-rich materials.

Modification of the TNM Staging System for Stage II/III Gastric Cancer Based on a Prognostic Single Patient Classifier Algorithm

  • Choi, Yoon Young;Jang, Eunji;Seo, Won Jun;Son, Taeil;Kim, Hyoung-Il;Kim, Hyeseon;Hyung, Woo Jin;Huh, Yong-Min;Noh, Sung Hoon;Cheong, Jae-Ho
    • Journal of Gastric Cancer
    • /
    • v.18 no.2
    • /
    • pp.142-151
    • /
    • 2018
  • Purpose: The modification of the cancer classification system aimed to improve the classical anatomy-based tumor, node, metastasis (TNM) staging by considering tumor biology, which is associated with patient prognosis, because such information provides additional precision and flexibility. Materials and Methods: We previously developed an mRNA expression-based single patient classifier (SPC) algorithm that could predict the prognosis of patients with stage II/III gastric cancer. We also validated its utilization in clinical settings. The prognostic single patient classifier (pSPC) differentiates based on 3 prognostic groups (low-, intermediate-, and high-risk), and these groups were considered as independent prognostic factors along with TNM stages. We evaluated whether the modified TNM staging system based on the pSPC has a better prognostic performance than the TNM 8th edition staging system. The data of 652 patients who underwent gastrectomy with curative intent for gastric cancer between 2000 and 2004 were evaluated. Furthermore, 2 other cohorts (n=307 and 625) from a previous study were assessed. Thus, 1,584 patients were included in the analysis. To modify the TNM staging system, one-grade down-staging was applied to low-risk patients according to the pSPC in the TNM 8th edition staging system; for intermediate- and high-risk groups, the modified TNM and TNM 8th edition staging systems were identical. Results: Among the 1,584 patients, 187 (11.8%), 664 (41.9%), and 733 (46.3%) were classified into the low-, intermediate-, and high-risk groups, respectively, according to the pSPC. pSPC prognoses and survival curves of the overall population were well stratified, and the TNM stage-adjusted hazard ratios of the intermediate- and high-risk groups were 1.96 (95% confidence interval [CI], 1.41-2.72; P<0.001) and 2.54 (95% CI, 1.84-3.50; P<0.001), respectively. Using Harrell's C-index, the prognostic performance of the modified TNM system was evaluated, and the results showed that its prognostic performance was better than that of the TNM 8th edition staging system in terms of overall survival (0.635 vs. 0.620, P<0.001). Conclusions: The pSPC-modified TNM staging is an alternative staging system for stage II/III gastric cancer.

Steam Gasification Characteristics of Oil Sand Coke in a Lab-Scale Fixed Bed Gasifier (실험실 규모의 고정층 가스화기에서 오일샌드 코크스의 수증기 가스화 특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Lee, See-Hoon;Lee, Jae Goo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Utilization and interest of unconventional fuel and process residue such as oil sand and its residue, oil sand coke, have been increased because of the continuous rise of fuel price and conventional fuel availability. In this study, the gasification of oil sand coke produced from coking process of oil sand was performed to utilize as an energy resource using lab-scale fixed bed gasification system. The combustion characteristics of oil sand bitumen and oil sand coke were investigated by using TGA and lab-scale gasification system was applied to reveal the characteristics of produced syngas composition with oxygen/fuel ratio, temperature and steam injection rate. Oil sand coke shows a high carbon content, heating value and sulfur content and low ash content and reactivity. In case of oil sand coke gasification, generally with increasing temperature, the amount of steam introduced and decreasing oxygen injection rate, $H_2$ content in product gas increased while the $CO_2$ content decreased. The calorific value of syngas shows about $2100kcal/Nm^3$ and this result indicates that the oil sand coke can be used as a resource of hydrogen and fuel.

Physicochemical Changes of Food Waste Slurry Co-fermented with Pig Manure Slurry (음식물쓰레기와 돈분 액상물의 혼합부숙시 이화학적 특성 변화)

  • So, Kyu-Ho;Seong, Ki-Seog;Hong, Seung-Gil
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.242-248
    • /
    • 2007
  • To find a feasibility of utilization of food waste slurry (FWS) generated during composting, FWS was combined with pig manure slurry (PMS) in various ratios and the change of nutrient contents and offensive odor of the combined slurries before and after fermentation were studied. The initial pH was 7.67 for PMS and 8.45 for FWS. However, during the fermentation, pH increased in the combined slurries with the higher FWS rate among the treatments while decreased in thosewith higher PMS rate. EC of each slurry sample showed that the difference among combined slurry samples has been reduced during fermentation and became stabilized in $21{\sim}23dS\;m^{-1}$ after 180 days. After 180 days fermentation, total nitrogen (T-N) decreased. T-N of mixture with a half and more FWS decreased up to 0.1%, less than the critical level (0.3%). The contents of O.M., T-N, phosphorus, calcium and magnesium decreased with fermentation while those of potash and salinity increased. From initial fermentation until 30 days, a lot of $NH_3$, as an offensive odor, was produced. However, it decreased steadily, except in higher PMS rate. In terms of producing $50{\mu}g\;ml^{-1}$ of $NH_3$, the top layer took 30 days after fertilization with FWS only, 45 days for utilized treatment with F75 (25 % of PMS), 75 days for utilized with F50 (50%) and F25 (75%) and 90 days for PMS only, respectively. $RNH_2$ also had similar trend with $NH_3$ but it was produced continuously as long fermentation proceeded. In terms of $RNH_2$, the decrease in concentration up to $50{\mu}g\;ml^{-1}$ were; 45 days for FWS only(F100), 105 days for F75 utilization, 120 daysfor F50, 165 days for F25, respectively. ethyl mercaptan was produced in PMS until 180 days after fertilization but it was not produced in FWS. Sensory tests as an integrated test of offensive odor were also done. FWS showed lower than 1 after 30 days from initial fermentation, while PMS had still offensive odor even up to 180 days from initial fermentation. It is probably affected by the continuous production of ethyl mercaptan and amines. However, considering in decrease T-N content caused by volatilization while offensive odor intensity according to official standard of fertilizer is lower than 2. Further study on controlling offensive odor needs to be done.

Studies on the Utilization of Persimmons -(Part 6) Investigation of the Optimum Thickness of Film Bag for Polyethylene Film Storage of Fuyu- (감의 이용(利用)에 관(關)한 연구 -(제6보(第六報)) 부유시의 Polyethylene Film 저장(貯藏)에 따른 최적(最適) Film 두께의 조사(調査)-)

  • Sohn, T.H.;Choi, J.U.;Seog, H.M.;Cho, R.K.;Seo, O.S.;Kim, S.T.;Ha, Y.S.;Kang, J.H.
    • Korean Journal of Food Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.78-82
    • /
    • 1978
  • In a series of studies on the utilization of persimmons, the purpose of this experiment was to examine the optimum thickness of film using different number of persimmons per film bag. 'Fuyu', persimmon variety was used in this investigation. The results obtained were as follows: The optimum thickness of the film bag was 0.08mm, 0.06mm, and 0.04mm for the bags packed with 3, 10 and 50 persimnons, respectively. The changes in the ratio of firmness, loss of fresh weight, titrable acidity and percentage of sugar contents were minimal in these three optimum combinations than the others. These results could be explained by the balanced optimum gas concentration, $CO_2$ 5-10% and $O_2$ 5%, in those three optimum combination. Therefore, it was suggested that the different thickness of film bag needs a particular number of fruits packed per bag for the long term storage in persimmons.

  • PDF

Utilization of Egg-shell for Bread-making (제빵시 난각의 이용에 관한 연구)

  • Kim, Joong-Man;Kim, Yong-Seob;Yang, Hee-Chon;Choi, Yong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.18 no.2
    • /
    • pp.160-166
    • /
    • 1989
  • This study was conducted to investigate whether egg-shell may be used as a mineral sourceor leavening agent in breadmaking. In Korea the waste volume of egg shell has been estimated at about 28,694 tons per year. Carbon dioxide generation maxima were established for barking powder$(153{\pm}3ml/g)$, egg-shell(205in reaction with lactic acid) and yeast$(115{\pm}3ml/sugar\;g)$. Gas release time required for each substance to reach $CO_2$ maximum was, for baking powder 7 minutes, for egg-shell 45 mins and for yeast 240 mins. Particle size of egg-shell in breadmaking was suitable more than 20 mesh (-). When egg-shell only was added to the basic formular without including lactic acid, no leavening effect was observed. However, when lactic acid and egg-shell were used together, the leavening effect was more or less equivalent to that of yeast(control). Addition of egg-shell was found to increase calcium content of bread products without noticeable altering flavor, as compared with control. Joint use of egg-shell was organic acids in breadmaking was shown to have potential in time saving, volume increase and yeast saving.

  • PDF

Characterization of Bovine Brucellosis in Korean Native Cattle by Means of Immunohistochemistry and Proteomics (면역조직 화학법 및 단백질체 변화 분석을 통한 한우에서 발생한 브루셀라증의 특성)

  • Jang, Seong-Jun;Do, Sun-Hee;Ki, Mi-Ran;Hong, Il-Hwa;Park, Jin-Kyu;Cho, Yu-Jeong;Park, Sang-Joon;Kim, Tae-Hwan;Kwak, Dong-Mi;Jeong, Kyu-Shik
    • Journal of Life Science
    • /
    • v.20 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • This study was conducted to examine the utilization of immunohistochemistry using the bovine anti-brucella immunoglobulin G (IgG) antibody in the diagnosis of brucellosis and to develop a functional biomarker relation for the progress of the disease. Anti-brucella IgG antibody was purified from the affected bovine serum using an affinity chromatography. We performed our investigation on 17 cases of brucellosis and 19 control cases with negative Rose-Bengal test results. Our purified anti-brucella IgG antibody showed a positive immunoreactivity in cytoplasmic hepatocytes of the centrilobular region, and glomeruli and tubular epithelium of the kidney. The protein pattern of the affected liver versus control was analyzed by two-dimensional electrophoresis, showing a different expression pattern of proteins between the two. Five protein spots were up-regulated and another were five down-regulated in the brucellosis liver. Significant upregulaton of catalase and 3-hydroxyacyl-CoA dehydrogenase might be due to a compensatory reaction in response to the endotoxic shock of brucella. In conclusion, the anti-brucella IgG antibody may be a good tool for discriminative diagnosis of the affected tissues and proteomics data suggest new target proteins underlying a possible pathogenic mechanism of brucellosis.