• Title/Summary/Keyword: $CO_2$ thermal system

Search Result 469, Processing Time 0.027 seconds

A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings) (건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로))

  • Lee, Jong-Sik;Kang, Hae-Jin;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware (질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어)

  • Won-Beom Lee;Won-Beom Lee;YuJin Moon;BongSoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.

Analysis of Sliding Friction and Wear Properties of Clutch Facing for Automobile (Part 2) (자동차용 클러치 마찰재의 미끄럼마찰마모특성 해석(제2보 마찰특성))

  • Lee Han-young;Kim Geon-young;Hur Man-Dae
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2005
  • In previous paper, the wear properties of clutch facing materials with two different copper amounts against fly-wheel materials used in the clutch system were investigated by sliding wear tests at different applied loads and speeds. This paper have been aimed to evaluate the friction properties for clutch facing materials at the same test conditions as the previous paper. The experimental results indicated that the friction properties of clutch facing materials are influenced from the thermal conductivities of the clutch facing material and the counter material. The clutch facing material with the lower thermal conductivity and the fly-wheel material with the higher thermal conductivity showed the low and stable friction coefficient in the range of high sliding speed. This appears to be due to the formation of a film on the surface of the fly-wheel material.

Influence of Addition Amount of CaCO3on the Synthesizing behavior and Microstructural Evolution of CaZrO3 and m-ZrO2 in 5ZrSiO4-xCaCO3 Mixture System (5ZrSiO4-xCaCO3 혼합계에서 CaCO3첨가량이 CaZrO3와 m-ZrO2의 합성 및 미세구조변화에 미치는 영향)

  • Kim, Jae-Won;Lee, Jae-Ean;Jo, Chang-Yong;Lee, Je-hyun;Jung, Yeon-Gil
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.572-580
    • /
    • 2003
  • Synthesizing behavior and microstructural evolution of $CaZrO_3$and $m-ZrO_2$in a thermal reaction process of $ZrSiO_4$-$xCaCO_3$mixtures, where x is 7 and 19, were investigated to determine the addition amount of CaO in CaO:$ZrO_2$:$SiO_2$ternary composition. CaZrO$_3$-Ca$_2$SiO$_4$precursor prepared by the mixture of $ZrSiO_4$and CaCO$_3$in aqueous suspending media was controlled to the acidic (pH=4.0) condition with HCI solution to enhance the thermal reaction. The addition amount of dispersant into the $ZrSiO_4$-$xCaCO_3$slip increased with increasing mole ratio of $CaCO_3$, which was associated with the viscosity of slip. Decarbonation reaction was activated with an increase of the addition amount of $CaCO_3$, showing different final temperatures in $ZrSiO_4$-$7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures as about 980 and 116$0^{\circ}C$, respectively, for finishing decarbonation reaction. The grain morphology was changed to spherical shape for all samples with an increase of sintering temperature. The grain size and phase composition of the synthesized composites depended on the mixture ratio of Zrsi04 and CacO3 powders, indicating that the main crystals were m-ZrO2 ($\leq$3 $\mu\textrm{m}$) and $CaZrO_3$ ($\leq$ 7 $\mu\textrm{m}$) in $ZrSiO_4$$>-7CaCO_3$and $ZrSiO_4$-$19CaCO_3$mixtures, respectively.

Evaluations of Mn-Ni-Co type thermistor thin film for thermal infrared sensing element (열형 적외선 센싱소자용 Mn-Ni-Co계 써미스터 박막 특성 평가)

  • 전민석;최덕균
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.297-303
    • /
    • 2003
  • Mn-Ni-Co type thin films were prepared at various conditions by a rf magnetron sputtering system. At the condition. or substrate temperature of $300^{\circ}C$ and $Ar/O_2$= 10/0, a cubic spinel phase was obtained. When oxygen was included in process gas, a cubic spinel phase was not formed even after the thermal annealing at $900^{\circ}C$. The thermistor thin film had no other elements except Mn, Ni and Co. The infrared reflection spectra of the thermistor thin films showed that the films had somewhat high reflectance for incoming infrared ray with some angle. The etch rate of the thermistor thin films was about 63nm/min at a condition of DI water : $HNO_3$: HCl = 60 : 30 : 10 vol%. The B constant and temperature coefficient of resistance of the thermistor thin films were 3500 K and -3.95 %/K, respectively. The voltage responsivity of the thermistor thin film infrared sensor was 108.5 V/W and its noise equivalent power and specific detectivity were $5.1\times 10^{-7}$ W/$Hz^{-1/2}$ and $0.2\times 10^6$cm $Hz^{1/2}$/W, respectively.

The Assessing the HVAC system and Measurements of Indoor Air Quality of Highway Bus (차량용 공조시스템의 현황 및 고속버스의 실내 공기 환경 측정)

  • Yoo, Ho-Chun;Noh, Kyoung Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.263-268
    • /
    • 2009
  • The current focus of domestic car industry is moving from technological development to reducing greenhouse gas. This study investigates and measures the HVAC system and indoor air condition of highway buses, which is conducted to develop a HVAC system using natural energy in the future. The measurements show that thermal balance is not fulfilled because heating sources are randomly placed, and relative humidity is in the 20 percent range both in HVAC and non-HVAC systems, which is far below 40%, or the highest thermal comfort level. CO2 concentration was found to be an average of 1500 ppm, but not more than 2522 ppm with 15 persons on board, and with 29 persons on board, an average of 2053 ppm, but not more than 3066 ppm, both of which far exceed allowed CO2 concentration level, or 1000 ppm. Generally, highway buses drop by rest stops and open doors for 15 to 20 minutes for getting in fresh air. But its air improvement effect is temporary, and it exacerbates indoor air condition.

  • PDF

A Study of Physical and Thermal Properties of Dyed PET Fiber using Supercritical Fluid Dyeing Technology (초임계 유체 염색기술 적용 PET 섬유의 물리적 및 열적 특성 분석)

  • Kim, Sam Soo;Oh, Jiyeon;Park, Changpyo;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.147-154
    • /
    • 2019
  • In this study, poly(ethylene terephthalate)(PET) fibres dyed with Disperse Red 167 using supercritical $CO_2$ technology. The purpose of this study was to investigate relationship between PET fibers and supercritical $CO_2$ during dyeing. The effects of temperature, pressure, dyeing time and mass ratio between the dye and PET in the dyeing chamber were considered. Thermal and mechanical properties of the fibers were investigated. Tensile strength of dyed PET fibers decreased at higher temperature and pressure conditions. DSC and DMA results indicated that the Tg and Tm values decreased significantly when compared to the pure PET fibers. However, uniformly dyed PET fibers were typically observed.

A comparative analysis of the simulation results of total window thermal transmittance(Uw) according to the evaluation method - Focused on comparison of the single window simulation results - (창세트 전체 열관류율(Uw) 평가 방법에 따른 시뮬레이션 결과 비교 분석 - 단창 창세트에 대한 시뮬레이션 결과 비교를 중심으로 -)

  • Lee, Yong-jun;Oh, Eun-joo;Kim, Sa-kyum;Choi, Hyun-jung;Kim, Yu-min
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.77-82
    • /
    • 2016
  • Purpose: The aim of this study is to calculate U-factor of the window using international standard methods and compare quantitative and tendency difference focused on ISO standard 15099 and ISO standard 10077. And the result of ISO standard calculation methods is verified using thermal performance experiment to evaluate applicability of domestic certification system. This study is utilized a basis for activation of domestic window certification system. Method: First, 16 cases are selected that is combined a variety of frame, Glazing, spacer, etc. The selected cases were simulated using WINDOW&THERM based on ISO 15099 and 10077 calculation method. Second, experiment was conducted based on Korean standard condition. Then, it was compared the error of experiment and simulation results. Through this process, ISO 15099 and 10077 calculation methods were evaluated accuracy and utilization. Result: The results show that the difference of ISO 15099 and ISO 10077-2 is maximum 5.4%. The results of comparing U-factor errors based on the Korea standard experiment test found 2.4%. Consequently, it will be possible to combination calculation methods of ISO 15099 and ISO 10077 for a single window.

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열 히트펌프 시스템의 성능분석)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF