• 제목/요약/키워드: $CO_2$ thermal system

검색결과 469건 처리시간 0.025초

The Lithium Ion Battery Technology

  • Lee, Ki-Young
    • Carbon letters
    • /
    • 제2권1호
    • /
    • pp.72-75
    • /
    • 2001
  • The performance of Li-ion system based on $LiCoO_2$ and Graphite is well optimized for the 3C applications. The charge-discharge mode, the manufacturing process, the cell performance and the thermal reactions affecting safety has been explained in the engineering point of view. The energy density of the current LIB system is in the range of 300~400 Wh/l. In order to achieve the energy density higher than 500 Wh/l, the active materials should be modified or changed. Adopting new high capacity anode materials would be effective to improve energy density.

  • PDF

이산화탄소 해양지중저장 처리를 위한 파이프라인 수송시스템의 열-유동 해석 (Thermal-Hydraulic Analysis of Pipeline Transport System for Marine Geological Storage of Carbon Dioxide)

  • 허철;강성길;홍섭;최종수;백종화
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.88-94
    • /
    • 2008
  • The concentration of atmospheric carbon dioxide (CO2), which is one of the major greenhouse gases, continues to rise with the increase in fossil fuel consumption. In order to mitigate global warming the amount of CO2 discharge to the atmosphere must be reduced. Carbon dioxide capture and storage (CCS) technology is now regarded as one of the most promising options. To complete the carbon cycle in a CCS system, a huge amount of captured CO2 from major point sources such as power plantsshould be transported for storage into the marine or ground geological structures. Since 2005, we have developed technologies for marine geological storage of CO2,including possible storage site surveys and basic design of CO2 transport and storage process. In this paper, the design parameters which will be useful to construct on-shore and off-shore CO2 transport systems are deduced and analyzed. To carry out this parametric study, we suggested variations in thedesign parameters such as flow rate, diameter, temperature and pressure, based on a hypothetical scenario. We also studied the fluid flow behavior and thermal characteristics in a pipeline transport system.

$Ni/{\gamma}-Al_2O_3/Metallic$ device를 이용한 고온 태양열 메탄-이산화탄소 개질반응 (Solar $CO_2$ Reforming of Methane Using $Ni/{\gamma}-Al_2O_3/Metallic$ foam device)

  • 신일융;이주한;이진규;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.275-281
    • /
    • 2011
  • Solar reforming of methane with $CO_2$ was successfully tested with a direct irradiated absorber on a parabolic dish capable of $5kW_{th}$ solar power. The new type of catalytically activated metallic foam absorber was prepared, and its activity was tested. Ni was applied as the active metal on the gamma - alumina coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically-activated ceramic foam absorber, this new metallic foam absorber is found to exhibit a superior reaction performance at the relatively low insolation or at low temperatures. In addition, unlike direct irradiation of the catalytically-activated ceramic foam absorber, metallic foam absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 2.1kW and the maximum $CH_4$ conversion was almost 40%.

  • PDF

Co/Si 시스템에서 capping layer에 따른 코발트 실리사이드 박막의 형성에 관한 연구 (A study on the formation of cobalt silicide thin films in Co/Si systems with different capping layers)

  • 김해영;김상연;고대홍;최철준;김철성;구자흠;최시영;;강호규
    • 한국진공학회지
    • /
    • 제9권4호
    • /
    • pp.335-340
    • /
    • 2000
  • 코발트실리사이드형성에 있어서 Capping layer로써의 Ti의 역할에 대한 연구를 수행하였다. 실리콘 산화막이 제거된 Si(100)기판과 $H_2SO_4$에 의한 chemical oxide를 형성한 Si(100)기판 위에 Co와 Ti를 증착한 후 열처리 온도 증가에 따른 계면반응과 상변화 등의 미세구조와 면저항 특성의 변화를 four point prove, XRD, TEM, SIMS등의 분석을 통하여 TiN capping, capping layer가 없는 경우에 대하여 비교하였다. 실리콘 산화막이 제거된 Si 기판 상에서 Ti capping의 경우 TiN capping, capping layer가 없는 경우보다 높은 온도에서 $CoSi_2$상이 형성되었으며, chemical oxide가 형성된 Si 기판 상에서는 Ti capping의 경우 코발트 실리사이드 박막을 형성 할 수 있었다. 이것은 capping layer인 Ti가 1차 RTA(Rapid Thermal Annealing)동안 Si 기판 방향으로 확산 침투하여 Co와 Si 사이에 존재하는 실리콘 산화막을 분해하는 역할을 하기 때문이다.

  • PDF

수평 상향 분사 덕트를 이용한 컨테이너선 화물창 환기 개선에 대한 실험적 연구 (An Experimental Study Improving Ventilation of Container Ship Hold Using Horizontal Upward Jet Duct)

  • 박일석;박상민;하지수
    • 대한조선학회논문집
    • /
    • 제43권2호
    • /
    • pp.236-245
    • /
    • 2006
  • The ventilation performance for the various venting duct arrays has been experimentally compared in the scaled model of the container hold. Most container ships have the ventilation duct system to remove effectively the condensing heat released from container refrigerator. The existing duct system is vertically installed and basically has the number of duct as many as the columns of reefer container stack. In this study, to make up for the weak points having stagnantly hot legions in the centered area of container hold for the present system, the horizontal upward jotting duct system was proposed and proved by temperature rising tests on the scaled model. In this paper, the expected flow regimes and the thermal and hydrodynamic analogies as well as the measured temperature distributions in a hold for various duct types and heat released rates are deeply discussed.

Investigation of Thermal Conductivity and Convective Heat Transfer of Alumina Nanofluids under Laminar Flow

  • Seung-Il, Choi;Hafizur-Rehman, Hafizur-Rehman;Eom, Yoon-Sub;Ji, Myoung-Kuk;Kim, Jun-Hyo;Chung, Han-Shik;Jeong, Hyo-Min
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.78-86
    • /
    • 2013
  • In this research, dilute colloidal suspension alumina nanofluids were prepared by dispersing alumina nanoparticles in DI water and ethylene glycol as base fluids. Particle size analyzer and TEM test results revealed that the size of the alumina nanofluids(3wt% and 5wt%) with dispersion time 3hrs were 46nm and 60nm respectively. Thermal conductivity of these alumina nanofluids was measured by means of hot wire technique using a LAMBDA system. For water based alumina nanofluids, thermal conductivity enhancement was from 2.29% to 3.06% with 5wt% alumina at temperatures ranging from 15 to $40^{\circ}C$. Whereas in case of ethylene glycol based alumina nanofluids under the same temperature range, thermal conductivity enhancement was from 9.6% to 10% with 5wt% alumina. An enhancement of 37% average convective heat transfer was achieved with 5wt% alumina nanofluids at Re of 1,100.

초임계 CO2 발전용 파워 터빈의 회전체 동역학 해석 및 구동 시험 (Rotordynamic Performance Analysis and Operation Test of a Power Turbine for the Super critical CO2 Cycle Application)

  • 이동현;김병옥;선경호;임형수
    • Tribology and Lubricants
    • /
    • 제33권1호
    • /
    • pp.9-14
    • /
    • 2017
  • This paper presents a rotordynamic analysis and the operation of a power turbine applied to a 250 kW super-critical $CO_2$ cycle. The power turbine consists of a turbine wheel and a shaft supported by two fluid film bearings. We use a tilting pad bearing for the power turbine owing to the high speed operation, and employ copper backing pads to improve the thermal management of the bearing. We conduct a rotordynamic analysis based on the design parameters of the power turbine. The dynamic coefficients of the tilting pad bearings were calculated based on the iso-thermal lubrication theory and turbine wheel was modeled as equivalent inertia. The predicted Cambell diagram showed that there are two critical speeds, namely the conical and bending critical speeds under the rated speed. However, the unbalance response prediction showed that vibration levels are controlled within 10 mm for all speed ranges owing to the high damping ratio of the modes. Additionally, the predicted logarithmic decrement indicates that there is no unstable mode. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation, and we monitor the shaft vibration and temperature of the lubricant during the test. In the steady state, we record a temperature rise of $40^{\circ}C$ between the inlet and outlet lubricant and the measured shaft vibration shows good agreement with the prediction.

반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교 (Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation)

  • 최은영;정영애;안승현;장동철;김대현;이동수;권진경;우영회
    • 생물환경조절학회지
    • /
    • 제30권4호
    • /
    • pp.401-409
    • /
    • 2021
  • 본 연구는 반밀폐형 토마토 재배 온실에서 광합성율 극대화를 위한 적정 탄산가스 시비 농도를 구명하고자 광합성 모델을 이용하여 잎의 최대 카복실화율(Vcmax), 최대 전자전달속도(Jmax), 열파괴, 잎 호흡 등을 계산하고 실제 측정값과 비교하였다. 다양한 광도(PAR 200µmol·m-2·s-1 to 1500µmol·m-2·s-1)와 온도(20℃ to 35℃) 조건에서 CO2 농도에 대한 A-Ci curve는 광합성 측정 기기를 사용하여 측정하였고, 모델링 방정식으로 아레니우스 함수값(Arrhenius function), 순광합성율(net CO2 assimilation, An), 열파괴(thermal breakdown), Rd(주간의 잎호흡)를 계산하였다. 엽온이 30℃ 이상으로 상승하였을 때 Jmax, An 및 thermal breakdown 예측치가 모두 감소하였고, 예측 Jmax의 가장 최고점은 엽온 30℃였으며 그 이상의 온도에서는 감소하였다. 생장점 아래 5번째 잎의 광합성율은 PAR 200-400µmol·m-2·s-1 수준에서는 CO2 600ppm, PAR 600-800µmol·m-2·s-1 수준에서는 CO2 800ppm, PAR 1000µmol·m-2·s-1 수준에서는 CO2 1000ppm, PAR 1200-1500µmol·m-2·s-1 수준에서는 CO2 1500ppm을 공급했을 때 포화점에 도달하였다. 앞으로 광합성 모델식을 활용하여 과채류 온실 재배 시 광합성을 높일 수 있는 탄산시비 농도를 추정할 수 있을 것으로 판단된다.

천장 카세트형 냉·난방기에 의해 형성되는 학교 교실의 실내 열환경 및 공기환경의 개선에 대한 연구 (A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms)

  • 장현재;이하영
    • 한국태양에너지학회 논문집
    • /
    • 제32권6호
    • /
    • pp.141-148
    • /
    • 2012
  • Ceiling cassette type air conditioner has been a main stream as a heating/cooling system recently in school, Korea. In this study, indoor thermal environments made by ceiling cassette type air conditioner were investigated by CFD simulation. Concentrations of $CO_2$ were investigated by a field measurement. Indoor thermal environment with the velocity inlet angle of $45^{\circ}$ from the ceiling in heating season was very ununiform so that thermal area was divided into two parts those the one is window side which is cold, and the other is corridor side which is hot. In cooling season under the same condition, there are areas too hot or too cold. If the velocity inlet angle is set in $30^{\circ}$ from the ceiling, indoor thermal environments was improved greatly in cooling season and heating season, too. Also, from the field measurement of $CO_2$ concentrations, it was suggested to install ventilators with proper air volume considered the number of class students.

후처리를 이용한 $CO_2$ 포집이 화력 발전설비 성능에 미치는 영향 해석 (Analysis of the Influence of Post-Combustion $CO_2$ Capture on the Performance of Fossil Power Plants)

  • 탁상현;김동섭;장영수;이대영;김민성
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.545-552
    • /
    • 2010
  • Research and development efforts to reduce $CO_2$ emission are in progress to cope with global warming. $CO_2$ emission from fossil fuel fired power plants is a major greenhouse gas source and the post-combustion $CO_2$ capture is considered as a short or medium term option to reduce $CO_2$ emissions. In this study, the application of the post-combustion $CO_2$ capture system, which is based on chemical absorption and stripping processes, to typical fossil fuel fired power plants was investigated. A coal fired plant and a natural gas fired combined cycle plant were selected. Performance of the MEA-based $CO_2$ capture system combined with power plants was analyzed and overall plant performance including the energy consumption of the $CO_2$ capture process was investigated.