• Title/Summary/Keyword: $CO_2$ thermal system

Search Result 469, Processing Time 0.033 seconds

Integrated Power Generation Systems Based on High Temperature Fuel Cells - A Review of Research and Development Status - (고온형 연료전지 기반 통합형 발전시스템 - 연구개발 동향 고찰 -)

  • Kim, Tong-Seop;Park, Sung-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.299-310
    • /
    • 2009
  • Fuel cells are expected to be promising future power sources in both aspects of thermal efficiency and environmental friendliness. Accordingly, worldwide research and development efforts have been enormously increasing recently in various applications such as power plants, transportation and portable power sources. Among others, high temperature fuel cells, such as solid oxide fuel cells and molten carbonate fuel cells, are suitable for electric power plants. Moreover, their high operating temperature is quite appropriate to construct further advanced integrated systems. This paper reviews recent literatures on research and development of integrated power generation systems based on high temperature fuel cells. Research and development efforts are summarized in the area of fuel cell/ gas turbine hybrid systems, application of carbon capture technology to fuel cell systems, integration of coal gasification with fuel cells, and the use of alternative fuels.

Effects of Kyeong points' Acupuncture of Three Hand Yang Collaterals on Facial Thermography of Healthy Human Beings (수삼양경 경혈 자침이 안면부의 체열변화에 미치는 영향)

  • 임정아;김재효;김경식;손인철
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.19-31
    • /
    • 2003
  • Objectives : This study examined effects of kyeong points (經穴)' acupuncture of three hand yang collaterals (手三陽經) on the facial thermography in health subjects, because the kyeong point in Yang collaterals belongs to the characteristic of the five elements (五行)meaning fire (火). Methods : The volunteers who participating in this study rested for 20-30 min. atroom temperature (23-$25^{\circ}C$) before the examination and were informed to avoid smoking, drinking and use of any drugsfor the previous day. The thermography of the face was taken using Infra-Red Imaging System (IR 2000, MEDI-CORE Co., Korea) at time intervals of 15 minutes : at 15 min before, just before and after, 15 min after, 30 min after and 45 min after acupuncture stimulation. Acupuncture was applied to the left kyeong points (經穴)' of three hand yang collaterals (手三陽經) for 30 minutes. Results : The results showed that kyeong points (經穴)' acupuncture of three hand yang collaterals (手三陽經) decreased the temperature of all the areas of the facial surface comparing to those of the control group. Also, it was observed that the quantities of thermal changes following acupuncture of ST36 increased in the all ROIs (regions of interest) compared to those of the control group. Conclusions : Observing the thermography classified by ROI, it was clear that acupuncture of kyeong points (經穴) of three hand yang collaterals (手三陽經) could modulate thermogram of the facial area however, it is necessary to undertake more investigation supporting these results.

  • PDF

Heat Treatment Characteristics of a Press Draw Mold by Using High Power Diode Laser (고출력 다이오드 레이저를 이용한 프레스 드로우금형의 열처리 특성)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jung-Do;Kim, Young-Kuk;Kim, Byeong-Hun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.339-344
    • /
    • 2009
  • Recently, Laser surface treatment technologies have been used to improve wear charactenitics and fatigue resistance of metal molding. When the laser beam is irradiated on the surface and laser speed is appropriate, the laser focal position is rapidly heated and the thermal energy of surface penetrates the material after irradiation, finally imbuing it with a new mechanical characteristic by the process of self-quenching. This research estimates the material characteristic after efficient and functional surface treatment using HPDL, which is more efficient than the existing CW Nd:YAG laser heat source. To estimate this, microstructural changes and hardness characteristics of three parts (the surface treatment part, heat affect zone, and parental material) are observed with the change of laser beam speed and surface temperature. Moreover, the depth of the hardened area is observed with the change of the laser beam speed and temperature. From the results of the experiments, it has been shown that the maximum hardness is approximately 788Hv when the heat treatment temperature and the travel speed are $1150^{\circ}$ and 2 mm/sec, respectively.

A Study on Combustion Characteristics with Ethanol and Hydrogen Enriched Gas Addition in Gasoline Engine (가솔린 엔진에서 에탄올 및 수소농후가스 첨가에 의한 희박연소특성 연구)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2928-2933
    • /
    • 2008
  • Trends of the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and it contributes to lower $CO_2$ emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed. In spite of the advantages of ethanol, fuel supply system might be affected by fuel blends with ethanol like a wear and corrosion of electric fuel pumps. So the on-board hydrogen production out of ethanol reforming can be considered as an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol reforming are also examined.

  • PDF

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

A Study on the Application of Thermoelectric Module to the Electric Telecommunication Equipment Cooling (열전소자를 이용한 전자 통신장비 냉각에 관한 연구)

  • Kim, Jong-Soo;Im, Yong-Bin;Kong, Sang-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.210-217
    • /
    • 2004
  • Cooling technology has been a vital prerequisite for the rapid, if not explosive, growth of the electronic equipment industry. This has been especially true during the last 20 years with the advent of intergrated circuit chips and their applications in computers and related electronic products. The purpose of this study is to develop a telecommunication equipment cooling system using a thermoelectric module combined with cooling fan. Thermoelectric module is a device that can perform cooling only by input of electric power. In the present study, the cooling package using the thermoeletric module has been developed to improve the thermal performance. The cooling characteristics of the electronic chip was placed into the subrack and it can be rapidly assembled or disassembled in the equipment rack. As a preliminary experiment, the cooling performances between a conventional way using a cooling fin and a proposed method applying the thermoelectric module was comosed and analyzyed. The cooling performance at a simulated electronic component packaging a thermomodule operated well.

Analysis of the Effect of Korea's Environmentally Harmful Subsidy Reform in the Electric Power Sector : Mainly on its Industrial Cross-subsidies Reform (우리나라 전력부문의 환경유해보조금 개편 효과분석 : 산업용 교차보조금 개편을 중심으로)

  • Kang, Man-Ok;Hwang, Uk
    • Journal of Environmental Policy
    • /
    • v.9 no.1
    • /
    • pp.57-81
    • /
    • 2010
  • Since the Republic of Korea is highly dependent on fossil fuels despite high oil prices, it urgently needs to renew its economic and social system to cut carbon emissions and achieve green growth. Therefore, reforming or eliminating subsidies related to the use of fossil fuels is a timely and oppropriate policy recommendation for Korea. It would be a win-win deal for Korean society as it would not only reduce the use of environmentally harmful fossil fuels but also enhance economic efficiency. In particular, cross-subsidies for industrial, agricultural and night thermal-storage power services make up more than 80 percent of all subsidies provided to the entire electric power industry sector of Korea. Of these cross-subsidies, this paper analyzes the electricity subsidy for industries, which takes up the largest share (about KRW 1.6583 trillion yearly), among the environmentally harmful subsidies in the electric power sector. Thus, the paper focuses on the analysis of ripple effect anticipated when this is reformed. To examine the effects of this subsidy reform, price elasticities were estimated using the ARDL (autoregressive distributed lag) model and quarterly data from 1990 to 2007. The main results of this study show that 1) annual energy demand for electric power in the industrial sector would drop by 12,475,930MWh and 2) $CO_2$ emissions would plummet by 2,644,897 tons per year if the subsidy were reformed. We can deduct from this that the abolition of environmentally harmful subsidies in the electric power sector in the Republic of Korea would considerably contribute to $CO_2$ emissions abatement in the country.

  • PDF

Underground Heat Transfer Characteristics of the Underground Heating System for Soil Sterilization in Greenhouse (온실 내 토양소독을 위한 지중난방시스템의 지중 열전달 특성)

  • Park, Kyung-Kyoo;Ha, Yu-Shin;Hong, Dong-Hyuck;Jang, Seung-Ho;Kim, Jin-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.2
    • /
    • pp.108-115
    • /
    • 2010
  • This study was conducted to estimate the optimum temperature and required time for soil sterilization when heated water was circulated through underground heating pipes in the greenhouse which solar heat was influenced to the temperature of soil during the summer day. Two different types of heating pipes were used for the experiment. One was a polyethylene pipe(XL) and the other was a corrugated ring shaped stainless steel pipe(STS). The results of the studies were summarized as follows; By measuring the thermal characteristics of the XL and STS, it was examined that the average temperature differences of the inlet and outlet were $8.5^{\circ}C$ and $13.3^{\circ}C$, the average flowrates were 15.3 L/min and 5.6 L/min, and the average radiation powers were 9.1 kW and 4.1 kW, respectively. As results of the regression analysis of underground temperatures, when average soil temperature was$35^{\circ}C$, an average water temperature was $80^{\circ}C$, and XL was used, it was estimated that the possible heat transfer distance, the required time for heat transfer and heat flux to reach the underground temperature of $60^{\circ}C$ were 300 mm, 230 hours, and $7.57kW/m^2$, respectively.

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

A Study on the Extraction of Monasil PCA using Liquid CO2 (액체 이산화탄소 이용한 Monasil PCA 추출에 대한 연구)

  • Cho, Dong Woo;Oh, Kyoung Shil;Bae, Won;Kim, Hwayong;Lee, Kab-Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.684-689
    • /
    • 2012
  • Poly(acrylic acid) (PAA) microspheres is one of the widely-used polymeric materials for the bio-field application and the electric materials. For the synthesis of PAA microspheres, the polymerization technique using surfactants is applied. After the synthesis, the purification and separation processes are required for the removal of surfactant. When general organic solvents were used, many problems, such as huge amount of waste solvent, additional separation processes, and the possibility of residual media, were occurred. Thus, High-pressure Soxhlet extraction using liquid $CO_2$ was developed to solve these problems. In this study, High-pressure Soxhlet extraction of the synthesized PAA microspheres using liquid $CO_2$ was conducted for the removal of Monasil PCA which is used for the dispersion polymerization of acrylic acid in compressed liquid Dimethyl ether (DME). The morphology of the extracted PAA particles was checked by field emission scanning electron microscopy (FE-SEM) and the residual concentration of Monasil PCA was analyzed by inductively coupled plasma - Optical Emission Spectrometer (ICP-OES). For studying the effect of the solvent effect, Soxhlet extraction was conducted using n-hexane, liquid DME, and liquid $CO_2$. In case of n-hexane, some extracted PAA microspheres were produced. However, deformation was also occurred due to the high thermal energy of n-hexane vapor. Liquid DME could not remove Monasil PCA. When using liquid $CO_2$, the extracted PAA microspheres which were free for the residual solvent were produced without deformation. For finding the optimum operating condition, high-pressure Soxhlet extraction was conducted for 8 hours with changing the temperature of reboiler and condenser. When the extractor temperature is $19.6{\pm}0.2^{\circ}C$ and the pressure is $51.5{\pm}0.5$ bar, the best removal efficiency was obtained.