• Title/Summary/Keyword: $CO_2$ thermal system

Search Result 469, Processing Time 0.027 seconds

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Analysis of Comfortable Environment in the Classroom with Humidification and Ventilation in Winter (겨울철 가습 및 환기에 따른 교실내 쾌적환경 분석)

  • Cheong, Seong-Ir;Sheng, Nai-Li;Kim, Doo-Hyun;Lee, Jae-Keun;Hwang, Yu-Jin;Park, Jong-Hoon;Seo, Seok-Jang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.7
    • /
    • pp.402-408
    • /
    • 2009
  • In this paper, the effects of ventilation and humidification on thermal comfort and indoor air quality(IAQ) were evaluated in a classroom when a heat pump system was operated in winter. Thermal comfort parameters, such as temperature, relative humidity, globe temperature and air velocity, were measured at 9 points in the classroom. The concentration of $CO_2$ and total suspended particles(TSP) in the classroom were measured in order to analyze IAQ. Temperature distribution in the classroom was decreased by $2{\sim}5^{\circ}C$ when the ventilation system and the humidifier were operated. When the relative humidity was adjusted to 60% by operating the humidifier and the ventilation system, the predicted mean vote(PMV) in the classroom was within the comfortable range of $-0.5{\sim}0.5$. When the ventilation system was operated, the average concentration of $CO_2$ and TSP were decreased by 645 ppm and 0.17 $mg/m^3$, respectively. This paper suggests the humidification and ventilation conditions to maintain the comfortable environment in the school classroom in winter experimentally.

Experiment on the Charging and Discharging Processes of a Closed Ice-Thermal-Energy-Storage System (밀폐식 빙축열시스템의 축열 및 방열과정에 관한 실험)

  • Kim, Kyung-Hwan;Yoon, Young-Hwan;Kim, Yeon-Kyu
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.164-169
    • /
    • 2007
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice-thermal-energy-storage system is known as one of the alternatives. The purpose of this paper is to evaluate the performance and the total efficiency of its storage tank, conducting the charging operation, the parallel operation and the single operation of a storage tank. The thermal energy density stored and discharging efficiency of a storage tank and the efficiency of total energy utilization of system are $18.4\;USRT-h/m^3$, 96.2% and 2028.7 kcal/kWh under the operation of design condition. When the storage tank is supplied more ice thermal energy than design condition, it is estimated that the efficiency of system are lower than the design condition by the supercooled effect.

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

A System Development of Thermal Energy Storage at High Temperatures (고온 축열 시스템의 개발에 관한 연구)

  • Hong, Seong-Ahn;Park, Won-Hoon;Choe, Hyung-Joon
    • Solar Energy
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 1988
  • Heat transfer phenomena in a high-temperature heat storage unit were investigated using molten salts. Carbonate salt, an equimolar mixture of $Li_2CO_3$ and $K_2CO_3$, which melts at $505^{\circ}C$ with a latent heat of 82 cal/g, was selected as the most promising latent heat storage material based on its low cost and excellent thermophysical properties at moderately high temperatures. It was also found that nitrate salts were good candidates of sensible heat storage materials. For the carbonate salt to be utilized commercially, however, several means of enhancing thermal recovery must be explored by promoting heat conduction through the solid salt formed during the heat discharge period. These would be achieved by the additions of aluminum screens and wool, and stainless fins. Finally, experimental results of moving boundary of phase change were well compared with predictied values obtained from the approximate solution.

  • PDF

Removal of iron scale from feed-water in thermal power plant by magnetic separation - Introduction to chemical cleaning line -

  • Yamamoto, Junya;Mori, Tatsuya;Hiramatsu, Mami;Akiyama, Yoko;Okada, Hidehiko;Hirota, Noriyuki;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijim, Sigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.6-10
    • /
    • 2018
  • Removal of iron oxide scale from feed-water in thermal power plant can improve power generation efficiency. We have proposed a novel scale removal system utilizing High Gradient Magnetic Separation (HGMS). This system can be applied to high temperature and pressure area. We have conducted the lab-scale model experiments using ${\varphi}50mm$ filters and it demonstrated high removal efficiency in HGMS, but scale-up of the system is required toward practical use. In this study, we conducted a large scale mock-up HGMS experiment. We used the superconducting solenoidal magnet with ${\varphi}400mm$ bore and demonstrated that our HGMS system can achieve sufficient scale removal capacity that is required to introduce into both off-line and on-line system.

Combustion Characteristics of a Hot Water Boiler System Convertibly Fueled by Rice Husk and Heavy Oil - Heavy Oil Combustion Characteristics -

  • Kim, Myoung Ho;Kim, Dong Sun;Park, Seung Je
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.306-311
    • /
    • 2013
  • Purpose: With the ever-rising energy prices, thermal energy heavily consuming facilities of the agricultural sector such as commercialized greenhouses and large-scale Rice Processing Complexes (RPCs) need to cut down their energy cost if they must run profitable businesses continually. One possible way to reduce their energy cost is to utilize combustible agricultural by-products or low-price oil instead of light oil as the fuel for their boiler systems. This study aims to analyze the heavy oil combustion characteristics of a newly developed hot water boiler system that can use both rice husk and heavy oil as its fuel convertibly. Methods: Heavy oil combustion experiments were conducted in this study employing four fuel feed rates (7.6, 8.5, 9.5, 11.4 $l/h$) at a combustion furnace vacuum pressure of 500 Pa and with four combustion furnace vacuum pressures (375, 500, 625, 750 Pa) at fuel feed rates of 9.5 and 11.4 $l/h$. Temperatures at five locations inside the combustion furnace and 20 additional locations throughout the whole hot water boiler system were measured to ascertain the combustion characteristics of the heavy oil. From the temperature measurement data, the thermal efficiency of the system was calculated. Flue gas smoke density and concentrations of air-polluting components in the flue gas were also measured by a gas analyzer. Results: As the fuel feed rate or combustion furnace vacuum pressure increased, the average temperature in the combustion furnace decreased but the thermal efficiency of the system showed no distinctive change. On the other hand, the thermal efficiency of the system was inversely proportionally to the vacuum level in the furnace. For all experimental conditions, the thermal efficiency remained in the range of 80.1-89.6%. The CO concentration in the flue gas was negligibly low. The NO and $SO_2$ concentration as well as the smoke density met the legal requirements. Conclusions: Considering the combustion temperature characteristics, thermal efficiency, and flue gas composition, the optimal combustion condition of the system seemed to be either the fuel feed rate of 9.5 $l/h$ with a combustion furnace vacuum pressure of 375 Pa or a fuel feed rate of 11.4 $l/h$ with a furnace vacuum pressure between 500 Pa and 625 Pa.

Study on Cooling Performance Characteristics of Air Conditioning System Using R744 for a Passenger Vehicle (이산화탄소를 적용한 승용자동차 냉방시스템의 성능특성에 관한 연구)

  • Lee, Ho-Seong;Cho, Chung-Won;Won, Jong-Phil;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5457-5463
    • /
    • 2011
  • The objective of this study is to investigate cooling performance characteristics of mobile air conditioning system using R744 as an alternative of R-134a. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a passenger vehicle, the developed air conditioning system using R744 was applied in a real passenger vehicle and tested under various operating conditions with the variation of gas-cooler inlet air conditions, evaporator inlet air temperatures and compressor speeds. As a result, cooling capacity and coefficient of performance (COP) of the tested air conditioning system decreased with the rise of the inlet air temperature of the gas cooler but increased with the rise of the inlet air temperature of the evaporator. In addition, cooling capacity and coefficient of performance (COP) increased by 42.2 % with the rise of the compressor speed from 900 rev/min to 1800 rev/min, but it decreased by 55.4%.

Developing a Cooling System for Fuel Cell Stacks Combined with Heat Pump Technology Using 1-D Simulation (1-D 시뮬레이션을 이용한 히트펌프 기술과 결합된 연료전지 스택용 냉각 시스템 개발)

  • Sang-Min Chung;Dong Gyu Park;Minsu Kim;Sung-wook Na;Seung-Jun Lee;Oh-Sung Kwon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • This paper proposes a novel cooling system for hydrogen fuel cell cooling systems by integrating heat pump technology to enhance operational efficiency. The study analyzed the cooling efficiency of the fuel cell cooling system. With the increasing focus on eco-friendly vehicle technologies to address environmental concerns and global warming, the transportation sector, a major contributor to greenhouse gas emissions, needs technological enhancements for better efficiency. The proposed cooling system was modeled through 1-D simulations. The analysis results of parameters such as thermal balance, temperature, and pressure of each component confirmed the stable operation of the system. By examining variations in the cooling system's flow rate, compressor RPM, and the Coefficient of Performance (COP) based on different refrigerants, initial research was conducted to derive optimal operating conditions and parameter values.

Thermal Performance of Building Envelope with Transparent Insulation Wall (건물 외피 투과형단열 벽체의 열성능 해석 연구)

  • Jang, Yong-Sung;Yoon, Yong-Jin;Park, Hyo-Soon
    • KIEAE Journal
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • Global efforts have made to reduce energy consumption and $CO_2$ gas emission. One of the weakest parts for energy loss through the whole building components is building envelopes. Lots of technologies to increase the thermal performance of building envelopes have been introduced in recent year. Transparent Insulation Wall(TIW) is a new technology for building insulation and has been function both solar transmittance and thermal insulation. A mathematical model of a Transparent Insulation Wall equipped with south wall was proposed in order to predict thermal performance under varying climates(summer and winter). Unsteady state heat transfer equations were set up using an energy balance equation and solved using Gauss-Seidel iteration solution procedure. The thermal performance of the TIW determined from a wall surface and air layer temperature, non-airconditioned room temperature and air conditioning load. As a result, this numerical study shows that the TIW is effective in an air conditioning load reduction. Further experimental study is required to establish complete TIW system.