• Title/Summary/Keyword: $CO_2$ injection rate

Search Result 238, Processing Time 0.025 seconds

Hydraulic Characteristics of Deep and Low Permeable Rock Masses in Gyeongju Area by High Precision Constant Pressure Injection Test (고정밀도 정압 주입시험에 의한 경주 지역 대심도 저투수성 암반 수리특성 연구)

  • Bae, SeongHo;Kim, Hagsoo;Kim, Jangsoon;Park, Eui Seob;Jo, Yeonguk;Ji, Taegu;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.243-269
    • /
    • 2021
  • Since the early 2010s, the social importance of research and practical projects targeting deep geological disposal of high-level nuclear waste, underground CO2 storage and characterization of deep subsurface by borehole investigation has been increasing. In this regard, there is also a significant increase in the need for in situ test technology to obtain quantitative and reliable information on the hydraulic characteristics of deep rock mass. Through years of research and development, we have independently set up Deep borehole Hydraulic Test System (DHTS) based on the key apparatuses designed and made with our own technology. Using this system, high precision constant pressure injection tests were successfully completed at the two 1 km boreholes located in Mesozoic granite and sedimentary rock regions, Gyeongju. During the field tests, it was possible to measure very low flow rate below 0.01 l/min with micro flow rate injection/control module. In this paper, the major characteristics of DHTS are introduced and also some results obtained from the high precision field tests under the deep and low permeable rock mass environment are briefly discussed.

Development of Early Embryos inIn Vivo Superovulated Rabbits (과배란 처리된 체내 초기배 발생에 관한 연구)

  • 조현조;이홍준;심금섭
    • Journal of Embryo Transfer
    • /
    • v.9 no.2
    • /
    • pp.167-172
    • /
    • 1994
  • This experiment was arried out to investigate the development of ea4y rabbit embryos in vivo. Twenty-six New Zealand White does were superovulated by treatment with PMSG(Intervet Co; I. M single injection, 150. U./rabbit) followed 3 day later by simultaneous I.V injection of 100 I.U HCG (Intervet Co, )and natural service with fertile male. All of does was killed at the specific times (24, 27, 30, 36, 42, 50 and 93 h post-hCG) to find out the early embryonic development in vivo respectively. Embryos at the specified stages of development were obtained at the following times after injection of hCG; one-ceH at 24 h, two-cell at 24~27h, four-cell at 27~36 h, morulae at 50 h and early blasto-cyst at 93 h and expanded or hatching blastocyst at 144 h. Number of embryos recovered per rabbit superovulated was 26.1 and average of recovery rate was 83.7%. The results suggest that superovulation was efficient for the increase of embryo number in rabbits, and as shown in results, asynchronous cleavage was prevalent among the recovered embryos.

  • PDF

Effects of Multi-stage Pilot Split Injection Strategy on Combustion and Emission Characteristics in a Single-Cylinder Diesel Engine (단기통 디젤엔진에서 다단 파일럿 분할 분사 전략이 연소 및 배기가스 특성에 미치는 영향)

  • Lee, Hyungmin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.692-698
    • /
    • 2020
  • This paper examines the effects of a multi-stage pilot split injection strategy on combustion and exhaust emission factors in a single-cylinder diesel engine. One analysis noted that in the single-injection condition, the maximum in-cylinder pressure and rate of heat release were highest. The pilot injection quantity was evenly divided, showing a tendency to decrease as the number of injections increased. In another injection condition, when the multi-stage pilot split injection strategy was applied, IMEP, engine torque, and combustion increased. The COVIMEP was greatest with the lowest combustion efficiency. The combustion ability was poor. In a single injection condition, the O2 concentration in the exhaust gas was the lowest and the CO2 was the highest. When the multi-stage split injection strategy was applied, the low temperature combustion process proceeded, and the oxidation rate of CO2 decreased while the emission level increased. In a single injection condition in which a locally rich mixture was formed, the HC emission level showed the highest results. A 55.6% reduction of NOx emission occurred under a three-stage pilot injection condition while conducting a multi-stage pilot split injection strategy.

NUMERICAL MODEL ON THE FUEL INJECTION CHARACTERISTICS FOR PREDICTING EXHAUST EMISSIONS FROM A MARINE DIESEL ENGINE

  • LEE S.-Y.;KIM G.-B.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.205-213
    • /
    • 2005
  • This study deals with the result of exhaust emissions and performance calculated by simulation of the fuel injection characteristics of the inline injection system in a marine diesel engine. The emissions are calculated through non-equilibrium by using the extended Zel'dovich kinetic mechanism for NOx and equilibrium method for OH, CO, $H_2$, Hand soot concentrations. Comparisons of the model predictions with the experimental values show reasonable agreement. Detailed prediction results showing the sensitivity of the model by injection rates are presented and discussed.

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Effect of CO2 Injection in SAGD Process for Oil Sand Bitumen Recovery (고온 고압 스팀을 주입하는 SAGD 공정에서 CO2주입이 오일샌드 역청 회수율에 미치는 영향)

  • Song, Byung Jin;You, Nansuk;Lee, Jae Hoon;Lee, Chul Wee
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.262-267
    • /
    • 2014
  • SAGD (steam assisted gravity drainage) process is the most commonly used in-situ technology for the recovery of bitumen from oil sand. It was investigated that the effects of different additives on bitumen recovery rate from oil sand in SAGD process among many possible mechanisms studied throughout the study. Bitumen recovery from thin layer oil sand reservoirs was simulated by using an experimental SAGD apparatus with scale of 150:1. To improve the simulation accuracy of thin layer oil reservoir, we have attached geological model (GM). Oil sand was simulated by using a mixture of extra heavy oil and glass beads with a diameter of 1.5 mm. $CO_2$ was used as an additive and the evolution of steam chambers were closely monitored, and the effects of $CO_2$ as an additive was investigated. Two types of injection methods were tested; continuous ($cCO_2$-SAGD) and sequential interruption ($sCO_2$-SAGD) $CO_2$ injection. For the $sCO_2$-SAGD experiment, it was observed that the recovery rates and CSOR were efficiently improved control experiment from 60.2% to 69.3% and 7.1 to 6.0, respectively, whereas $cCO_2$-SAGD experiment decreased from 60.2% to 57.6% and 7.1 to 7.3.

A Study on the Biological Treatment of RO Concentrate Using Aerobic Granular Sludge (호기성 그래뉼 슬러지를 이용한 RO 농축수의 생물학적 처리에 관한 연구)

  • Kim, Hyun Gu;Ahn, Dae Hee;Cho, Eun Ha;Kim, Han Yong;Ye, Hyoung Young;Mun, Jung Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The purpose of this study is to efficiently improve biological sequencing batch reactor (SBR) system of high-concentrated nitrate nitrogen in reverse osmosis (RO) concentrates by total dissolved solids (TDS) regulation. Since a laboratory-scale SBR system had been operated, we had analyzed specific denitrification rate (SDNR) and specific oxygen uptake rate (SOUR) for microbial activity in according to various injection concentration of TDS. As a result, higher injection concentration of TDS decreased SDNR, and delayed denitrification within denitrification process. Moreover, the higher injection concentration of TDS was, the lower microbial activity was during operation of laboratory-scale SBR system. Therefore, the regulation of TDS injection concentration is necessary to improve efficiency of nitrate nitrogen in the biological SBR system, and treatment of calcium ion ($Ca^{2+}$) is also specifically focused to remove nitrate nitrogen. Moreover, analytical data of SDNR and SOUR can be the effective kinetic design parameters to application of biological treatment of RO concentrate by aerobic granular sludge (AGS).

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.