• Title/Summary/Keyword: $CO_2$ hydrate dissolution

Search Result 13, Processing Time 0.025 seconds

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

Dissolution Behavior and Hydrate Effect on $CO_{2}$ Ocean Sequestration

  • Kim Nam Jin;Kim Chong Bo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1216-1225
    • /
    • 2005
  • $CO_{2}$ ocean sequestration is one of the promising options to reduce $CO_{2}$ concentration in the atmosphere because the ocean has vast capacity for $CO_{2}$ absorption. Therefore, in the present investigation, calculations for solubility and dissolution behavior of liquid $CO_{2}$ droplets released at 1000 m and 1500 m deep in the ocean from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_{2}$ dissolution characteristics in the ocean. The results show liquid $CO_{2}$ becomes bubble at around 500 m in depth, and the solubility of seawater is about $5{\%}$ less than of pure water. Also, it is shown that the injection of liquid from a moving ship is a more effective method for dissolution than from a fixed pipeline, and the presence of hydrate on liquid $CO_{2}$ acts as a resistant layer in dissolving liquid $CO_{2}$.

Study on the Dissolution Behavior of Liquide $CO_2$ Hydrate Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소 하이드레이트 용해에 대한 연구)

  • Kim, Nam-Jin;Park, Sung-Seek;Seo, Hyan-Min
    • New & Renewable Energy
    • /
    • v.4 no.2
    • /
    • pp.12-20
    • /
    • 2008
  • Calculations for the dissolution behavior of liquid CO2 droplets released in the East Sea and the Clipperton Clarion from a moving ship and a fixed pipeline have been carried out in order to estimate the CO2 dissolution characteristics in the ocean. The results show that the injection of liquid CO2 from a moving ship in a high temperature point is an effective method for dissolution. Also, it is noted that the ultimate plume generated from CO2 bubbles repeatsand shrinking due to the peeling from a fixed pipeline, and the presence of hydrate layer on a liquid CO2 droplet acts as a resistant layer in dissolving liquid CO2.

  • PDF

Study on the Dissolution Behavior of Liquide $CO_2$ Hydrate Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소 하이드레이트 용해에 대한 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Park, Sung-Seek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.597-601
    • /
    • 2008
  • Calculations for the dissolution behavior of liquid $CO_2$ droplets released in the East Sea and the Clipperton Clarion from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_2$ dissolution characteristics in the ocean. The results show that the injection of liquid $CO_2$ from a moving ship in a high temperature point is an effective method for dissolution. Also, it is noted that the ultimate plume generated from $CO_2$ bubbles repeatsand shrinking due to the peeling from a fixed pipeline, and the presence of hydrate layer on a liquid $CO_2$ droplet acts as a resistant layer in dissolving liquid $CO_2$.

  • PDF

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.4-11
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350 m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

  • PDF

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.66-69
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peel ins from a fixed pipeline.

  • PDF

FIXATION OF LEAD CONTAMINANTS IN Pb-DOPED SOLIDIFIED WASTE FORMS

  • Lee, Dong-Jin;Chung, David;Hwang, Jong-Yeon;Choi, Hyun-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.101-108
    • /
    • 2007
  • Fixation of lead contaminants in the solidification/stabilization using Portland cement has been investigated by X-ray diffraction, scanning electron microscopy and compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide ($Pb_4SO_4(CO_3)_2(OH)_2$), lead carbonate hydroxide hydrate ($3PbCO_3{\cdot}2Pb(OH)_2{\cdot}H_2O$) and two other unidentified lead salts in cavity areas and was observed to significantly retard the hydration of cement. By 28 days, howevere, the XRD peaks of most of the lead precipitates have essentially disappeared with only residual traces of lead carbonate sulfate hydroxide and lead carbonate hydroxide hydrate evident. After 28 days of curing, hydration appears well advanced with a strong portlandite peak present though C-S-H gel peaks are not particularly evident. Lead species produced with the dissolution of lead precipitates are fixed into the cement matrix to be calcium lead silicate hydrate (C-Pb-S-H) during cement-based solidification.

Dissolution Characteristics of Liquid $CO_2$ Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소의 용해특성)

  • Kim, N.J.;Lee, J.Y.;Seo, T.B.;Kim, C.B.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.75-84
    • /
    • 2000
  • Global wanning induced by greenhouse gases such as carbon dioxide is a serious problem for mankind. Carbon dioxide ocean disposal is one of the promising options to reduce carbon dioxide concentration in the atmosphere because the ocean has vast capacity for carbon dioxide sequestration. However, the dissolution rate of liquid carbon dioxide in seawater must be known in advance in order to estimate the amount of carbon dioxide sequestration in the ocean. Therefore, the solubility, the surface concentration, the droplet size and other factors of liquid carbon dioxide at various depths are calculated. The results show that liquid carbon dioxide changes to carbon dioxide bubble around 500 m in depth, and the droplet is completely dissolved below 500 m in depth if carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with the diameter of 0.015 m or less. In addition, the hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide. The surface concentration of carbon dioxide droplet with the hydrate film is about 50% at 1500 m in depth and about 60% at 1000 m in depth of the carbon dioxide solubility. Also, the ambient carbon dioxide concentration in the plume is an another crucial parameter for complete dissolution at the intermediate ocean depth, and the injection of liquid carbon dioxide from a moving ship is more effective than that from a fixed pipeline.

  • PDF

Development of Pharmaceutical Dosage Form with New Sibutramine Salt (시부트라민 신규염을 이용한 새로운 시부트라민 제제의 개발)

  • Moon, Jin-Wook;Shin, Teak-Hwan;Lee, Dong-Wook;Cho, Jun-Young;Chang, Sung-Ju;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2010
  • Sibutramine is an orally administered centrally-acting antiobesity agent and inhibits both noradrenaline(norephinephirine) and serotonin(5-HT) reuptake. These effects are contributed by its active metabolites, M1 and M2. However, as the free base form of sibutramine is an oil form in room temperature, it had the problem of handling and stability. Thus, this drug should be used in the form of acid salt form in the pharmaceutical application. Unfortunately, anhydrous sibutramine hydrochloride is highly hygroscopic and unstable. In order to solve the hygroscopicity of the anhydrous salt form, another sibutramine acid salt form must be developed as a hydrate form. In this study. to overcome these problems, various of sibutramine acid salt forms were prepared with the pharmaceutically available salts such as maleate, esylate, mandelate, camsylate, besylate, salicylate, tartrate, isethionate and malate forms, and their physicochemical properties were investigated. Sibutramine malate was selected for excellent solubility and stability among the listed salt forms above. Its pharmacokinetic parameters were evaluated in rats comparing with sibutramine HCl, resulting in similar parameters. In vitro dissolution study of sibutramine malate-loaded capsule was performed comparison with commercial product ($Reductil^{(R)}$) in pH 1.2, pH 4.0, pH 6.8 and water medium. Our results indicated that there were no significant differences in their dissolution profiles were similar in all tested medium. Thus, sibutramine malate-loaded capsule should be a potential candiate due to its excellent solubility, good stability and biosimilar absorption.

New Crystal form of Valsartan Dipotassium Salt (발사르탄 이칼륨염의 신규 결정형)

  • Seo, Sung-Ki;Kim, Dae-Duk;Oh, Eui-Chaul
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.3
    • /
    • pp.173-176
    • /
    • 2009
  • A new crystal form of valsartan dipotassium was isolated by recrystallization using the one-pot method. The new crystal form was identified as a monohydrate form ($C_{24}H_{27}N_5O_3K_2.H_2O$) and characterized by diffential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray powder diffractometry (PXRD). The new crystal data demonstrated to be clearly different from those known for the tetrahydrate form ($C_{24}H_{27}N_5O_3K_2.4H_2O$). It was observed that the monohydrate of vasartan dipotassium salt was completely dissolved in water within 1 hour and its dissolution rate was much faster than anhydrous free form of valsartan.