• Title/Summary/Keyword: $CO_2$ Storage

Search Result 1,448, Processing Time 0.026 seconds

Shelf-life of Red Chili Pepper on MA and CA Storage (MA 및 CA저장에 의한 생홍고추의 저장성)

  • Lee, Ka-Soon;Lee, Joo-Chan;Lee, Jong-Kuk;Han, Kyu-Heung;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.7 no.2
    • /
    • pp.139-144
    • /
    • 2000
  • In order to extend the shelf-life of red chili pepper, MA and CA technology were used. In MA storage, red chili peppers(Jinmi and Jangkun) were packaged in 0.03 mm PE film bags(3 kg/bag) having two holes(${\sigma}$2~3 cm) at 2~3$^{\circ}$C or 7~8$^{\circ}$C. In CA storage, red chili peppers(Jinmi) were stored on following gas composition; 5 or 10% CO$_2$ in combination with 2 or 5% O$_2$ at 2~3$^{\circ}$C, respectively. The changes of weight loss and decay rates during MA storage were less in Jinmi than in Jangkun and less at 2~3$^{\circ}$C storage(except O$_2$ 5%, CO$_2$ 10% condition) while in CA it decreased after 40 days of storage. Red chili peppers would be stored for 30 days when stored in MA conditions(0.03 mm PE film bag) and for 60 days when srored in CA condition on O$_2$ 2%, CO$_2$ 10% based on overall quality of sensory evaluation.

  • PDF

Quality Stability of Products Containing Fermented Ginseng Berry Extracts (인삼열매 발효추출물을 함유한 제품의 품질안정성)

  • Kim, Seung Tae;Heo, Chang Hoe;Kim, Sung Hoon;Lee, Won Jong;Jang, Su Kil;Joo, Seong Soo
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.5
    • /
    • pp.473-479
    • /
    • 2019
  • The purpose of this study was to investigate the storage stability of liquid stick packs containing concentrated and steam-dried ginseng berry. Storage stability of liquid stick packs was determined during storage at 10, 25 and $35^{\circ}C$ for 4 months. The pH was decreased from 4.81 to 3.81 after 4 months at $35^{\circ}C$ while the acidity and solubility were not changed during storage of 4 months. The DPPH radical scavenging activity was decreased during storage at $35^{\circ}C$ after 4 months. The Hunter L and yellowness (b) values decreased while the redness (a) was not changed during storage after 2 or 3 months. The total amount of six ginsenosides including Rg1, Rb1, F2, Rg3(S), Rg3(R), and Rg5 was not changed after storage of 4 months at 10 and $25^{\circ}C$. Neither bacteria nor coliforms were not detected during storage of 4 months. Considering quality parameters, significant changes were observed in color parameters L and b, while all others remained unchanged during 4 months stored at 10 and $25^{\circ}C$.

The Effect of Modified Atmosphere Packaging and Addition of Rosemary Extract, Sodium Acetate and Calcium Lactate Mixture on the Quality of Pre-cooked Hamburger Patties during Refrigerated Storage

  • Muhlisin, Muhlisin;Kang, Sun Moon;Choi, Won Hee;Lee, Keun Taik;Cheong, Sung Hee;Lee, Sung Ki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.1
    • /
    • pp.134-142
    • /
    • 2013
  • The effect of modified atmosphere packaging (MAP; 30% $CO_2$+70% $N_2$ or 100% $N_2$) and an additive mixture (500 ppm rosemary extract, 3,000 ppm sodium acetate and 1,500 ppm calcium lactate) on the quality of pre-cooked hamburger patties during storage at $5^{\circ}C$ for 14 d was evaluated. The addition of the additive mixture reduced aerobic and anaerobic bacteria counts in both 30% $CO_2$-MAP (30% $CO_2$+70% $N_2$) and 100% $N_2$-MAP (p<0.05). The 30% $CO_2$-MAP was more effective to suppress the microbial growth than 100% $N_2$-MAP, moreover the 30% $CO_2$-MAP combined with additive mixture resulted in the lowest bacterial counts. The hamburger patties with additive mixture showed lower CIE $L^*$ and CIE $a^*$, and higher CIE $b^*$ than those with no additive mixture. The 30% $CO_2$-MAP tended to decrease the TBARS during storage regardless of the addition of additives. The use of 30% $CO_2$-MAP in combination with additives mixture was effective for maintaining the quality and extending the shelf-life of pre-cooked hamburger patties.

Feasibility of Mineral Carbonation Technology as a $CD_{2}$ Storage Measure Considering Domestic Industrial Environment (국내 산업 여건을 고려한 $CD_{2}$ 저장 방안으로서 광물 탄산화 기술의 타당성)

  • Han, Kun-Woo;Rhee, Chang-Houn;Chun, Hee-Dong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.137-150
    • /
    • 2011
  • $CO_{2}$ mineral carbonation technology, fixation technology of $CO_{2}$ as carbonates, is considered to be an alternative to the $CO_{2}$ geological storage technology, which can perform small- or medium-scale $CO_{2}$ storage. We provide the current R&D status of the mineral carbonation with special emphasis on the technical and economical feasibility of $CO_{2}$ mineral carbonation taken into consideration of the domestic geological and industrial environment. Given that the domestic industry produces relatively large amount of the industrial by-products, it is expected that the technology play a pivotal role on the $CO_{2}$ reduction countermeasure, reaching the potential storage capacity to 12Mt-$CO_{2}$/yr. The economics of the overall process should be improved via the development of advanced technologies on the pretreatment of raw materials, method/solvents for metal extraction, enhanced kinetics of carbonation reactions, heat integration, and the production of highly value-added carbonates.

Process Design of Carbon Dioxide Storage in the Marine Geological Structure: I. Comparative Analysis of Thermodynamic Equations of State using Numerical Calculation (이산화탄소 해양지중저장 처리를 위한 공정 설계: I. 수치계산을 통한 열역학 상태방정식의 비교 분석)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.4
    • /
    • pp.181-190
    • /
    • 2008
  • To response climate change and Kyoto protocol and to reduce greenhouse gas emissions, marine geological storage of $CO_2$ is regarded as one of the most promising option. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources(eg. power plant), to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. To design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of this paper is to compare and analyse the relevant equations of state including ideal, BWRS, PR, PRBM and SRK equation of state. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. Ideal and SRK equation of state did not predict the density behavior above $29.85^{\circ}C$, 60 bar. Especially, they showed maximum 100% error in supercritical state. BWRS equation of state did not predict the density behavior between $60{\sim}80\;bar$ and near critical temperature. On the other hand, PR and PRBM equation of state showed good predictive capability in supercritical state. Since the thermodynamic conditions of $CO_2$ reservoir sites correspond to supercritical state(above $31.1^{\circ}C$ and 73.9 bar), we conclude that it is recommended to use PR and PRBM equation of state in designing of $CO_2$ marine geological storage process.

  • PDF

Numerical study of CO2 hydrate dissolution rates in the ocean: Effect of pressure, temperature, and salinity

  • Kyung, Daeseung;Ji, Sukwon;Lee, Woojin
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this study, we numerically investigated the effect of pressure (100-250 bar), temperature (274-288 K), and salinity (3.5% w/w electrolytes) on $CO_2$ hydrate dissolution rates in the ocean. Mass transfer equations and $CO_2$ solubility data were used to estimate the $CO_2$ hydrate dissolution rates. The higher pressure and lower temperature significantly reduced the $CO_2$ hydrate dissolution rates due to the increase of $CO_2$ particle density. In the high salinity condition, the rates of $CO_2$ hydrate dissolution were decreased compared to pure water control. This is due to decrease of $CO_2$ solubility in surrounding water, thus reducing the mass transfer of $CO_2$ from the hydrate particle to $CO_2$ under-saturated water. The results obtained from this study could provide fundamental knowledge to slow down or prevent the $CO_2$ hydrate dissolution for long-term stable $CO_2$ storage in the ocean as a form of $CO_2$ hydrate.

An Experimental Study on the Evaluation of Thermal Performance of Floor mortar with PCM (PCM을 혼입한 방통 모르타르의 열적 성능 평가에 관한 실험적 연구)

  • Kim, Bo-Hyun;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.5-6
    • /
    • 2011
  • CO2 reduction is the most urgent issue the world is facing. So, there should be a measure to reduce the CO2 emission in construction industry which has more released CO2 gas than other industries. CO2 emission of building depend on using energy. Then efficient energy use process working efficiently at CO2 reduction. Therefore In this study, author find the technical possibility of saving the building energy using the PCM which is able to control heat, storage heat and potential heat. So, it considered that apply to floor heating type which is major heating system of living space in Korea. And evaluate the Using possibility.

  • PDF

Effect of Gas Mixture Ratio of Modified Atmosphere Packaging on Quality of Chicken Breast (CO2와 N2 혼합 비율에 따른 포장 닭고기 가슴육의 냉장 저장 중 품질 특성)

  • Chae, Hyun-Seok;Na, Jae-Cheon;Choi, Hee-Cheol;Kim, Min-Ji;Bang, Han-Tae;Kang, Hwan-Ku;Kim, Dong-Wook;Suh, Ok-Seok;Ham, Jun-Sang;Jang, Ae-Ra
    • Food Science of Animal Resources
    • /
    • v.31 no.1
    • /
    • pp.100-106
    • /
    • 2011
  • The physicochemical characteristics of chicken breast were determined to identify the optimal ratio of $CO_2$ and $N_2$ to maintain chicken breast quality during cold storage for 6 d. The mixing ratios of $CO_2$ and $N_2$ were 20:80, 40:60, 60:40, and 80:20, respectively. The pH of the chicken breast packed with 80% $CO_2$ and 20% $N_2$ was lower than that of the control on day 1 (p<0.05). The lightness ($L^*$) of the breast increased with increasing $CO_2$ during storage (p<0.05), whereas no difference was found for redness ($a^*$) and yellowness ($b^*$). A lower volatile basic nitrogen level was found for chicken breasts exposed to higher $CO_2$ levels. Furthermore, lipid oxidation of the chicken breast packed with $CO_2$ decreased with increasing $CO_2$ level, and 40% $CO_2$ significantly reduced 2-thiobarbituric acid reactive substances (TBARS) values on days 1 and 6. The total number of microbes was reduced in chicken breast exposed to more than 40% $CO_2$ during storage days 3 and 6 (p<0.05); however, Escherichia coli was not affected by $CO_2$ level. Coliforms of chicken breast were reduced in the 40% $CO_2$ level on storage day 3. Moreover, tray-packed chicken breast exposed to 40% $CO_2$ did not collapse. These results suggest that 40% $CO_2$ and 60% $N_2$ were the optimal conditions for packaging chicken breasts during cold storage.

Physicochemical Properties and Storage Stability of Plant-based Alternative Meat Products Prepared with Low-Fat Soybean Powder Treated by Supercritical CO2 (초임계 이산화탄소 처리된 저지방 대두분말로 제조한 식물성 대체육의 이화학적 품질 특성 및 저장 안정성)

  • Min-Jeoung Pyo;Kyo-Yeon Lee;Chae-Yeon Han;Chae-Eun Park;Sung-Gil Choi
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.4
    • /
    • pp.264-273
    • /
    • 2023
  • Physicochemical properties and storage stability of plant-based alternative meat prepared with low-fat soybean powder (LPAM) treated by supercritical-CO2 and those of full-fat soybean powder (FPAM) were compared. Ash and crude protein contents were higher in LPAM than in FRAM. Water absorption capacity and oil absorption capacity were significantly higher in LPAM than in FPAM. Water binding capacity was higher in LPAM than in FPAM during a 20 days storage period at 5℃ and pH was significantly lower in LPAM than in FPAM after a 5~10 days storage period. Hardness, gumminess and chewiness significantly increased with the increase in the storage period, and the three were significantly higher in LPAM than in FPAM after 10 days and 20 days of storage. The acid value showed no remarkable difference according to the storage period in LPAM; however, it was significantly higher in FPAM than in LPAM after 20 days of storage. The peroxide value and TBA value were significantly increased according to the storage period, and were significantly lower iin LPAM than in FPAM during all the storage periods. Therefore, the use of low-fat soybean powder may be effective in improving oxidative stability during storage in the production of plant-based alternative meat.

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition (고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화)

  • Park, Jihwan;Son, Jin;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.